

Edited by

Carlos Rafael Fernandes Picanço
Luiz Alexandre Barbosa de Freitas

Hernando Borges Neves Filho

Introduction to software development for behavior analysts

Volume 2

1st Edition

© 2020 Associação Brasileira de Psicologia e Medicina Comportamental,
Campinas, São Paulo, Brasil.

ISBN 978-65-87203-01-0

E-book for free online distribution.

Associação Brasileira de Psicologia e Medicina Comportamental – ABPMC
Campinas, São Paulo, Brasil, 2020

_

Administrative Board 2019-2020

Executive Board
President: João Vicente Marçal
Vice-president: Denise Lettieri
First secretary: Gustavo Tozzi

Second secretary: Elisa Sanabio Heck
First treasurer: Flávio da Silva Borges

Second treasurer: Cristiano Coelho

Editora ABPMC's Editorial Board
Angelo A. S. Sampaio

César A. Alves da Rocha
Diego Zilio

Giovana Munhoz da Rocha
Monalisa F. F. C. Leão

About the book
Editorial supervision: Editora ABPMC's Editorial Board

Cover: Edmilson Pinto da Silva Junior
Layout: Carlos Rafael Fernandes Picanço

Support: Imagine Tecnologia Comportamental

Authors

Brent A. Kaplan
Dr. Brent Kaplan received his PhD from the Applied Behavioral Economics Laboratory at
the University of Kansas and completed his postdoctoral training at the Fralin Biomedical
Research Institute at VTC. He currently works with Dr. Mikhail Koffarnus as a Research
Assistant Professor in the Department of Family and Community Medicine at the
University of Kentucky. His research interests focus on applying behavioral economic
concepts to understand drug abuse and drug valuation. His other research interests include
novel applications of behavioral economics and integrating contemporary technology into
data analysis and dissemination.

Carlos Rafael Fernandes Picanço
Dr. Rafael Picanço received his doctorate in Psychology from the graduate Program of
Behavior Theory and Research at the Federal University of Pará. In the Experimental
Analysis of Behavior, he conducted research on discriminative processes in the context of
individualized teaching with capuchin monkeys (Sapajus spp) and typically developing
adult humans. His main current research interest is the intersection between Computer
Vision and Applied Behavior Analysis.

Christopher E. Bullock
Christopher, BCBA-D, received his Ph.D. in Psychology from the University of Florida
and postdoctoral training at the Johns Hopkins University School of Medicine’s Kennedy
Krieger Institute. His research has focused on making use of technological innovation and
the application of findings from basic laboratory studies to enhance the effectiveness of
behavioral interventions. In particular, his research has examined the principles governing
the effectiveness of conditioned reinforcement, variables that influence choice responding,
and extending the concepts of behavior economics to reinforcer assessment.

Hernando Borges Neves Filho
Dr. Hernando Neves Filho is bachelor in Psychology and Psychologist (Federal University
of Pará, UFPA), master in Behavior Theory and Research (UFPA) and Doctor in
Experimental Psychology (University of São Paulo, USP). Was an invited researcher at the
University of Auckland (New Zealand), and postdoctoral fellow at the Pontifícia
Universidade Católica de Goiás and at UFPA. Currently work as senior researcher at
Imagine Behavioral Technology.

i

Jodie A. Waits
Jodie Waits is a doctoral student at the Louisiana State University's School Psychology
Department under Dr. Shawn Gilroy. She received her Bachelor of Science degree in
psychology from the University of New Orleans. She is currently interested in developing
communication interventions for bilingual children with autism.

Julia Zanetti Rocca
Professor at the Federal University of Mato Grosso. Master's degree in Philosophy and a
Ph.D. in Psychology, both from the Federal University of São Carlos (UFSCar). Works in
the area of educational psychology, with emphasis on learning to read and write processes.
Has experience in computerized teaching in the program "Aprendendo a Ler e Escrever
em Pequenos Passos [Learning to Read and Write in Small Steps]" (ALEPP) from the
National Institute of Science and Technology on Behavior, Cognition and Teaching (INCT
- ECCE) and was a consultant in the Computer Innovation Laboratory (LINCE - UFSCar)
for the construction of teaching programs.

Luiz Alexandre Barbosa de Freitas
Bachelor in Psychology (Federal University of São João del Rei), Master in Behavior
Analysis (State University of Londrina). Currently, is a doctoral student in Theory and
Research of Behavior at Federal University of Pará, with international internship at Florida
Tech and Texas Christian University. Since 2011, is a professor at the Federal University
of Mato Grosso's Department of Psychology. Teaches Behavior Analysis courses since
2009. Has clinical and research experience with intervention for people with Autistic
Spectrum Disorder. As an amateur programmer, writes his own scripts for research (far
from elegant, but functional) in Python. Is an enthusiast of programming as a
complimentary tool for any and all professions.

Ricardo Fernandes Campos Junior
Biology bachelor (Federal University of Mato Grosso) and Master in Genetics (University
of São Paulo), worked with Approximate Bayesian Computation and evolutionary
processes analysis using Coalescent Theory. Has 7+ years of experience in R
programming and recently has been working with data mining and artificial intelligence
with a technical training scholarship from National Institute of Science and Technology on
Behavior, Cognition, and Teaching.

Shawn P. Gilroy
Gilroy, BCBA-D NCSP LBA, received his Ph.D. in School Psychology from Temple
University. Certified as both an educational psychologist and behaviour analyst, Shawn
completed his pre-doctoral training in Behavioural Pediatrics at the University of
Nebraska Medical Center’s Munroe-Meyer Institute and his postdoctoral training at the
Johns Hopkins University School of Medicine’s Kennedy Krieger Institute. His research

ii

has focused on the development and evaluation of evidence-based protocols for the use of
technology with exceptional populations. Additional projects have included behavioural
decision-making, applied behaviour economics, and modelling of human decision-making.

Théo P. Robinson
Théo Robinson, BCBA, is a behavioral researcher and computer programming hobbyist
from Melbourne, Florida. He is currently enrolled as a student at the Florida Institute of
Technology, where he is working to earn a doctoral degree in Applied Behavior Analysis.
His interests include the study of relapse phenomena and finding ways to improve the
quality and efficacy of translational research methodologies for studying human behavior.

Wivinny Araújo Lima
Born in Anápolis/GO, Brazil, he graduated in Psychology at the Pontifical Catholic
University of Goiás (PUC-GO). He was a scientific initiation fellow for three years, under
Professor Lorismario Ernesto Simonassi, during which he developed various softwares for
use by the Laboratory of Experimental Analysis of Behavior. He received the Magna Cum
Laude Diploma of Academic Dignity for his undergraduate performance. In 2019, he
joined as a master student in the Graduate Program in Psychology at PUC-GO as a
CAPES fellow. Develops research on: Superstition, Remembering, Stroop Effect,
Discrepant Rules and Culture.

iii

Preface

This second volume of the "Introduction to Software Development for Behavior
Analysts" series, as the first one, aims to provide accessible tools for students, professionals,
teachers and researchers interested in developing behavioral technology with the helping
hand of computers. This book is designed to get you started on specific fields in
contemporary Behavior Analysis that have been making efforts towards this end. Remember:
programming is not just for professional programmers, with a specific formal instruction or
working to large technology companies. This is not the only possible scenario. Of course, this
does not mean that you should not be pursuing specific training for problems you aim to
solve. We hope this book will reduce entry barriers for the use of computing solutions in our
community, and will also encourage the leadership and autonomy in more behavior analysts
interested in solving behavioral problems with the help of computing solutions.

C. R. F. P.
L. A. B. F.
H. B. N. F.

July, 2019.

iv

Foreword

Passing on information, skills, and passion for learning to the next generation of

scientists, researchers, practitioners, clinicians, and students is the greatest pleasure of serving

as a teacher. I have benefited greatly from mentorship and training from some of the finest

teachers in my field, and it is extremely gratifying to have had the opportunity to read the

chapters in this book and to provide some initial thoughts for the interested reader.

Textbooks can be so useful because they generally cull authors who have some sort

of expertise in specific topics, and those related topics are discussed in one place. This makes

it eminently easier for students – or anybody else – to read summaries and descriptions of

scientific, clinical, and/or entrepreneurial endeavors in a cohesive and efficient way. In

Introduction to software development to behavior analysts – volume 2, readers will

experience an introduction to important questions and solutions about the use of technology

in Behavior Analysis. Specifically, this book focuses on the development of software, and its

ultimate application, for advancing clinical service, training, and research in Behavior

Analysis.

Behavior Analysis has already come a long way with the introduction of technology

for clinical service, training, and research. Basic researchers used the cumulative record as a

way to easily and conveniently show the changes in behavior, and the changes in

environmental conditions, in operant laboratories. Producing the cumulative record required a

great deal of time and preparation unrelated to the experiment per se. Today, basic researchers

incorporate computer technology to design and execute complex experiments in far more

efficient manner. Applied researchers have used – and some still use – ‘paper and pencil’

methods to collect data. However, there are numerous technology-driven options to replace

the ‘paper and pencil’ methods for more efficient data collection, treatment integrity and

v

reliability calculations, and graphing. When integrated into research and practice, these

technological advancements open the door to greater efficiency at a minimum, and creative

innovation as the ultimate goal.

In this book, readers will learn about a broad array of technological advancements in

software development relevant to Behavior Analysis. Chapter 1 shows the history and

relevance of technological advancements in the field. Beyond the examples of applications

available for research and clinical use, authors discuss the importance of developing free and

open-source software, and the need to train behavior analysts for software developing.

Chapter 2 introduces readers to a specific software platform that is ideal for conducted basic

and translational research via the Internet – a virtual laboratory. Chapter 3 discusses a novel

way to register data using R programming language. Chapter 4 introduces a discussion on

software development and research authorship: should a developer be co-author in an article

he developed software for?

Michael Kelley

June, 2019.

vi

Contents

Authors i

Preface iv

Foreword v

Chapter 1

Current use and development of FOSS in Behavior Analysis:
Modern Behavioral Engineering. 1
Shawn P. Gilroy, Brent A. Kaplan, Christopher E. Bullock and Jodie A. Waits.

Chapter 2

A step-by-step guide to develop experiments with Axure© RP. 21
Théo P. Robinson.

Chapter 3

Developing an application to register continuous responses
with the shiny package in R environment 71
Ricardo Fernandes Campos Júnior and Júlia Zanetti Rocca.

Chapter 4

Is the programmer an author? Developing software for research 94
Wivinny Araújo Lima and Carlos Rafael Fernandes Picanço.

vii

Chapter 1

Current use and development of FOSS in Behavior Analysis:
Modern Behavioral Engineering1

Shawn P. Gilroy2

Louisiana State University, LA, USA

Brent A. Kaplan
Virginia Tech Carilion Research Institute
Virginia Polytechnic Institute, VA, USA

Christopher E. Bullock
Francis Marion University, SC USA

Jodie A. Waits
Lou isiana State University, LA, USA

Abstract

Technological development and engineering skills have long held a place in Experimental Behavior
Analysis. This chapter presents a brief history of do-it-yourself culture in Behavior Analysis and
suggests that this culture moved from the manufacture of electromechanical devices to computer
programming. Additionally, it provides a panoramic view of recent advances in the field obtained
with the help of computational solutions including contributions to research fields such as substance
dependence, the provision of services in the field of atypical development and behavioral
economics. It discusses the role of the development of free and open computer programs in the
scientific field, suggesting that this model contributes to the teaching of engineering skills in
academia and has the potential to increase the value of the work of behavior analysts in the market.

1 Editors note: A pre-print version of this chapter received the editor’s authorization for early distribution.
2 Please send correspondence to Shawn Patrick Gilroy either to sgilroy1@lsu.edu or shawnpgilroy@gmail.com. You

can find Shawn on GitHub at https://github.com/miyamot0.

OPEN SOURCE BEHAVIOR ANALYSIS 2

Maker culture in Behavior Analysis: a brief history

Technological development and engineering skills have long held a place in the

Experimental Analysis of Behavior. In years prior to Burrhus Frederic Skinner (1904-1990)

and his seminal works, behavioral psychologists regularly crafted the tools and technology

necessary to perform controlled experiments. For example, scientists such as John Broadus

Watson (1878-1958) frequently highlighted the measurement apparatuses (predominantly

used with nonhuman animals at the time) used to investigate behavioral phenomena (Wat-

son, 1916). Even 100 years ago, developing highly-specialized apparatuses was necessary

when responses were difficult to perceive (e.g., by visual inspection), hard to measure reli-

ably (e.g., due to the high rate of occurrence), or spanned great lengths of time (i.e., whole

days, weeks). Skinner (1956) provides a thoughtful summary of the many tools created to

support his early operant experiments.

In reviewing Watson and Skinner’s discussions of apparatuses, it is made clear that

the technology for measuring and recording behavior was not something that was commer-

cially available at the time. In recollections provided in Catania (2002), the work of students

in Skinner’s Pidgeon Lab (1958-1962) regularly involved designing and constructing equip-

ment using the mechanical components available at the time. For example, Catania (2002)

describes the use of stepper motors and punched tape to improvise the repeating functionality

(i.e., looping) necessary for time-controlled events (e.g., interval recording, reinforcer deliv-

ery). Dinsmoor (1990) also discussed similar experiences in this era, highlighting how many

behavioral scientists at the time were performing the metal- and woodworking necessary for

their experiments on their own. In the eras recalled by Catania and Dinsmoor (i.e., 1950-

1960), behavioral psychologists were regularly designing and constructing the technology in

their experiments using some combination of stepper motors, relays, switches, and timers

(Escobar, 2014). As thoroughly and thoughtfully detailed in Escobar (2014), the days of

relays, switches, and improvised apparatuses was eventually replaced by affordable computer

2

OPEN SOURCE BEHAVIOR ANALYSIS 3

equipment that could be programmed using some form of state notation (e.g., Med State

NotationTM) or programming language (e.g., BASIC). In this period of increased computer

usage, commercial products for running operant experiments (e.g., bought from Med Asso-

ciates Inc) became increasingly available and affordable for researchers with the requisite

funding. At this point, the focus became more on computer programming rather than devel-

oping apparatuses from individual components.

Recent behavior analytic research using technology

Like the initial work done by Skinner using relays and timers, much of the early work

using computer programming and computers focused on automating various aspects of exper-

imental work (Chayer-Farrell, Freedman, & Computers, 1987; Emmett-Oglesby, Spencer, &

Arnoult, 1982; Kaplan, 1985). For example, programmed instructions could be written to

automate various aspects of research, such as generating variable schedules of reinforcement

(Hantula, 1991). However, research using computers (e.g., smartphones, tablets) has since

developed past simple schedules of reinforcement into a variety of systems designed to pro-

duce socially-significant behavior changes (Marsch, Lord, & Dallery, 2014).

Technology interventions against substance dependence

Recent research in Behavior Analysis has leveraged the capabilities afforded by mod-

ern technology (i.e., cell phones, personal computers) and the internet to develop and evalu-

ate novel forms of intervention. For instance, both Reynolds, Dallery, Shroff, Patak, Leraas,

and Silverman (2008) and Dallery, Raiff, and Grabinski (2013) used personal computers

(PCs) with an equipped web camera and carbon monoxide (CO) monitor to support a remote

smoking abstinence program. That is, Reynolds et al. (2008) leveraged the capabilities of the

internet to develop a remote method of contingency management whereby reinforcers (i.e.,

money) were delivered contingent on providing an acceptable CO sample (i.e., lower CO

samples were suggestive of abstinence). However, this research was limited in the technolog-

ical capabilities because study personnel had to manually email participants the results of the

3

OPEN SOURCE BEHAVIOR ANALYSIS 4

CO samples and deliver the reinforcers (i.e., cash) at the end of each week.

In a more recent contingency management study by Koffarnus, Bickel, and

Kablinger (2018), treatment-seeking, alcohol-dependent participants were provided internet-

capable smartphones and breathalyzers and received reinforcers via a reloadable debit card.

This study used a fully remotely-delivered contingency management protocol resulting in

very high levels of adherence (over 95% of submitted breathalyzer samples) and abstinence

(over 85% of participants) among those in the contingent group. Similarly, other reinforce-

ment-based approaches using computer-aided forms of contingency management have been

developed for cocaine- and opioid-dependent individuals (Bickel, Marsch, Buchhalter, &

Badger, 2008). As an extension to Internet-based contingency management, Raiff, Fortugno,

Scherlis, and Rapoza (2018) have also developed an evaluated a version of a smoking cessa-

tion program using a game-based approach. Rather than delivering monetary forms of rein-

forcement, this approach utilized virtual rewards in the form of in-game items and social sup-

port.

Technology and behavior analytic service delivery

Aside from treatments for substance dependence and abuse, recent research has evalu-

ated how video streaming software can be used to support remote behavioral consultation.

Through video consultation, trained and credentialed behavior analysts can provide services

to families, educators, and other professionals in areas where such services are not locally

available (Tomlinson, Gore, & McGill, 2018). Recent research on this novel mode of service

delivery has found that this approach yielded similar benefits with regard to the traditional

method of in-person service delivery (Lindgren et al., 2016; Sutherland, Trembath, &

Roberts, 2018).

A systematic review by Sutherland et al. (2018) found that remote service delivery

has been successfully evaluated for a range of services beneficial to individuals with disabili-

ties, such as behavioral analytic assessments and early intervention. Aside from similar effi-

4

OPEN SOURCE BEHAVIOR ANALYSIS 5

cacy with regard to traditional modes of delivery, others have found that this novel approach

was often more economical and sustainable (Hay-Hansson & Eldevik, 2013;

Wacker et al., 2013) and could be made available at a lower cost to families (Tomlin-

son et al., 2018). Further, Lindgren et al. (2016) provide a compelling case that even highly-

specialized procedures (i.e., experimental functional analyses) can be implemented remotely

with families and the requisite technology.

High-tech treatments for individuals with disabilities

Regarding direct interventions with service users (e.g., autism, intellectual disabilities,

academic difficulties), several forms of intervention using modern technology have been

developed. Under the umbrella of Computer-Assisted Instruction, the HeadsproutTM reading

program is an online reading program based on stimulus equivalence and verbal behavior.

Using PCs and the internet, the Headsprout TM reading program has been found to be effec-

tive for children with reading difficulties (Cullen, Alber-Morgan, Schnell, & Wheaton, 2014)

as well as for children diagnosed with autism (Plavnick et al., 2014; Whitcomb,

Bass, & Luiselli, 2011). As highlighted in Cullen et al. (2014), programs such as Headsprout

TM serve to support the use and dissemination of instructional curricula based on sound

behavioral science.

In the area of social and communication impairments, behavior analysts have lever-

aged mobile technology (e.g., tablets, iPads) and commercially-available mobile applications

(i.e., apps) to support individuals with effective speech. As found in a recent review by

Gilroy, McCleery, and Leader (2017), over 50 peer-reviewed studies have used Speech-Gen-

erating Devices (SGDs) as a replacement for deficient vocal repertoires. Using mobile tech-

nology, several apps have been developed to provide functionality previously available only

on dedicated devices (e.g., Tobii Dynavox TM) at a high cost (more than US $ 8,000). Apps

such as the Picture Exchange Communication System (PECS) Phase III app (Pyramid Educa-

tional Consultants, 2018) have been found to be effective supplements to function-based

5

OPEN SOURCE BEHAVIOR ANALYSIS 6

communication training (Alzrayer, Banda, & Koul, 2014; Ganz, Hong & Goodwyn, 2013).

Further, positive effects of these devices and intervention have also been demonstrated in

larger, randomized control trials for children diagnosed with autism (An et al., 2017; Gilroy,

McCleery, & Leader, 2018).

Behavior Analysis and Behavioral Economics

Behavioral Economics, within the broader Behavior Analytic domain, has also been

leveraging the capabilities of modern technology. Originally based on the framework of a vir-

tual (i.e., simulated), experimental supermarket (Epstein, Dearing, Roba, & Finkelstein, 2010;

Epstein et al., 2012), the Experimental Tobacco Marketplace (ETM) is a virtual storefront

where participants may purchase, either hypothetically or experientially, from a range of

tobacco products (Bickel et al., 2018; Heckman et al., 2017; Pope et al., 2018; Quisenberry,

Koffarnus, Epstein, & Bickel, 2017; Quisenberry, Koffarnus, Hatz, Epstein, & Bickel, 2015).

Indeed, the ETM framework serves as an analogue to the complex, real-world marketplace

where a variety of research questions can be evaluated such as the effects of taxation/subsi-

dization, flavor/product restrictions, and different product concentrations (Pope et al., 2018).

When used in research, participants are provided a budget that approximates their typical

tobacco product expenditures and their consumption of these goods is assessed as the price

these products increases. Importantly, the ETM has been continuously refined to capitalize on

more flexible frameworks.

In the initial forms of the ETM developed using WordPressTM and OpenCartTM, this

approach presented with several limitations. For example, this approach required substantial

time and effort from the research team and was not well-suited to large-scale data collection

(e.g., use on Amazon’s Mechanical TurkTM) or automation. To address these limitations,

operant behavioral economists have since programmed alternatives to support more flexible

and modular usage. For example, these teams have used Javascript (e.g.,

Qualtrics Research PlatformTM) and Python (i.e., local Flask server) to develop novel meth-

6

OPEN SOURCE BEHAVIOR ANALYSIS 7

ods of measuring individual preferences and consumption.

Behavior analysts and FOSS technology

While many areas of behavior analytic research have effectively capitalized on the

availability of modern technology, several behavior analysts have moved beyond using tech-

nology and instead towards developing their own. That is, rather than relying on commer-

cially-available tools and devices, these behavior analysts have created specific technology to

enhance their research and practice. In many areas of behavior analytic research and practice,

such developments have been necessary because many commercially-available products may

not provide functionality and features desired by behavior analysts.

The development and use of software that is both free and open is important for col-

laborative science, especially Behavior Analysis. For example, the ability to publicly inspect

and re-use open computer software and scripts supports transparent and accessible sciences—

regardless of individual specialty or focus. As noted in the third version of the General Public

License (https://www.gnu.org/licenses/gpl-3.0.en.html), “When we speak of free software,

we are referring to freedom, not price.” The term free here refers to the right to openly

inspect software, and as useful, extend software to suit individual needs. This freedom is par-

ticularly salient for professionals working with exceptional populations, where nearly all ele-

ments of applied work require high levels of individualization. The availability of open soft-

ware allows those with the requisite skills to truly individualize technology for individual

users and particular populations and to do so in ways that support transparency and replicabil-

ity.

7

OPEN SOURCE BEHAVIOR ANALYSIS 8

Electronic data collection tools

Behavior analytic research has required specialized tools to support behavior analytic

practices. For example, specialized software has been developed to support the measurement

of behavior in assessments and interventions for individuals with developmental disabilities

(Bullock, Fisher, & Hagopian, 2017; Gilroy, 2017). These applications have been particularly

useful in alleviating the potentially large time demands placed on researchers and practition-

ers when collecting observation-based behavioral data.

Many of the earlier approaches for automating data collection for multiple topogra-

phies of problem behavior were either not commercially-available, prohibitively expensive,

or were unacceptably invasive. As a result, most behavior analytic practices have involved

methods in which an observer is equipped with a timekeeping device, and paper and pencil

are used to record when and how often behavior occurred. The development of computerized,

behavior analytic data collection software has provided a means to automate many aspects of

data collection, analysis, and storage.

In the BDataPro data collection program (Bullock et al., 2017), this software can be

used to systematically collect the information necessary to perform experimental analyses

(i.e., functional analysis) as well as evaluate the effectiveness of on-going treatments. This

software makes use of keyboard key presses as a means of recording the time of occurrence

and frequency and duration of target behaviors. Automated data analyses occur following

each session and include the response rate, latency, percent of intervals, and various other

measures (that allow the inference of inter-observer reliability, for example). Figure 1 illus-

trates the interface of BDataPro.

8

OPEN SOURCE BEHAVIOR ANALYSIS 9

Figure 1. BDataPro Data Collection Software.

This program was written in Visual Basic 6.0, submitted to peer-review, and released

under a free software license—the General Public License, Version 2.0 (GPLv2). It has been

used and refined through extensive clinical use at many premier behavior analytic programs

in the United States. While BDataPro was originally created for the Windows operating sys-

tem, Gilroy (2017) designed a cross-platform alternative (DataTracker) that could be com-

piled for the Windows, macOS, and Linux operating systems. DataTracker was written in the

C++ language and the GUI was constructed using the Qt Framework. The DataTracker soft-

ware is currently in active development and released under a free software license—the Gen-

eral Public License, Version 3.0 (GPLv3).

Speech generating devices

From beyond the data collection, behavior analysts have developed mobile applica-

tions designed to aid/supplement function-based treatments. For example, Gilroy,

McCleery, et al. (2018) developed an open-source app for use in communication interven-

tions for children diagnosed with autism. The FastTalker app was designed to function simi-

lar to communication interventions using exchanges of picture cards. The interface used in

FastTalker is shown in Figure 2.

9

OPEN SOURCE BEHAVIOR ANALYSIS 10

Figure 2. FastTalker Application.

Using a format consistent with earlier behavior analytic interventions, FastTalker was

designed to enable a comparison of methods using high-tech (i.e., tablet) and low-tech (i.e.,

picture-exchange) communication devices. Specifically, FastTalker was used in a randomized

control trial which found that high-tech approaches, such as FastTalker, provided benefits

that were consistent with those from low-tech approaches (Gilroy, McCleery, et al., 2018).

FastTalker was constructed using the C# language and the Xamarin.Forms framework to sup-

port Android and iOS platforms, with current efforts dedicated to porting FastTalker to

Google’s cross-platform Flutter framework (Dart). It has been licensed under an open source

license—the permissive MIT license.

While not specific to function-based intervention and autism spectrum disorder, the

Cboard application (CIREHA, 2018) is another open-source communication application

designed to provide functionality similar to commercially-available applications, such as Pro-

loquo2GoTM (AssistiveWare, 2018), but free-of-charge. The interface provided by Cboard is

1

OPEN SOURCE BEHAVIOR ANALYSIS 11

displayed in Figure 3.

Figure 3. Cboard Application. The screenshot was retrieved from the GitHub repository asso-

ciated with Cboard, at https://github.com/cboard-org/cboard.

Cboard is a browser-based application, written in JavaScript using Node.js and Reac-

t.js, that functions across any device (e.g., tablet, phone, computer) with a modern internet

browser. The application is currently in active development and released under a free soft-

ware license—the GPLv3.

Operant Behavioral Economics

Aside from assessment and intervention using technology, behavior analysts have also

developed technology specific to statistical analyses. Statistical analyses, especially in the

Experimental Analysis of Behavior, are increasingly observed in behavior analytic venues

(Young, 2018). As noted in Gilroy, Franck, and Hantula (2017), few commercial statistical

packages offer models and metrics specific to behavior analysts. That is, few statistical tools

1

OPEN SOURCE BEHAVIOR ANALYSIS 12

have historically been available to perform analyses of operant demand and delay discounting

(or probability discounting).

Studies of operant demand have been used broadly across disciplines, including sub-

stance dependence (Kaplan, Foster, et al., 2018), consumer purchasing behavior (Foxall,

Olivera-Castro, Schrezenmaier & James, 2007; Foxall, Wells, Chang & Oliveira-Cas-

tro, 2010; Kaplan, Gelino & Reed, 2018), and assessments and treatments for individuals

with disabilities (Gilroy, Kaplan & Leader, 2018). While demand analyses have been done

using commercial software in the past, the Demand Curve Analyzer (DCA; Gilroy et

al., 2018) was recently developed a completely free and open-source alternative for complet-

ing these analyses. The DCA was written in the C++ language and the graphical user inter-

face was constructed using the Qt Framework. The program functions identically across

many popular operating systems (e.g., macOS, Windows) with automated updates for users.

Because the DCA was developed as a tool specialized for demand curve analyses, specific

options are available for screening data, analyzing data, and generating a range of different

outputs for use in analyses relevant to Behavior Analysis. The DCA and all its assets were

released under a free software license (GPLv3).

Similarly, for researchers who primarily use syntax-based statistical tools such as the

R Statistical Software (R Core Team, 2017), behavior analysts have developed an R package

(i.e., a collection of specialized functions) for conducting demand curve analyses. Like the

DCA, the R package, beezdemand (Kaplan, 2018), is specifically suited to conduct the com-

mon steps involved in demand curve analyses, which include data pre-processing, data

screening, curve fitting, comparisons, and visualizations. Importantly, the utility of beezde-

mand is the ability to integrate seamlessly within a larger code-based workflow, meaning an

entire analysis can be conducted within one program. The beezdemand R package was

released under a free software license (GPLv3).

Aside from studies of operant demand, statistical tools have also been developed for

1

OPEN SOURCE BEHAVIOR ANALYSIS 13

use in studies of delay (or probability) discounting. The Discounting Model Selector (DMS;

Gilroy et al., 2017) was designed for behavior analysts to support the fitting and comparison

of multiple possible delay discounting models. This software was designed for use by behav-

ior analysts, who may or may not have the statistical training to accurately fit and compare

competing models of discounting. Like the DCA, the DMS was written using the C++ lan-

guage and the Qt framework. The DMS was made with a GUI that functions identically

across many popular operating systems (e.g., macOS, Windows) and offers automated

updates. The DMS, and all its associated assets, were released under a free software license—

the GPLv3.

Future directions and next steps

At the present time, many areas of Behavior Analysis continue to adapt to the increas-

ingly powerful capabilities of technology. Alongside increasingly affordable hardware, a

range of free and open-source development frameworks continue to mature. As a result of

these increasingly accessible frameworks, even the novice developer can create software to

enhance their research and practice. While this trend is likely to continue, the development of

software for behavior analytic purposes would benefit from established standards and formal

training in Computer Science.

Training in Computer Science and programming

While several behavior analysts have taken the lead in developing technology, this

number is relatively small at the time. Although using commercially-available products, with

the requisite funding, has proven to be effective in behavior analytic research, few commer-

cial products (i.e., software) have been developed explicitly for behavior analytic use and

interpretation. Regardless of other constraints, the number of behavior analysts developing

technology specific to Behavior Analysis is also constrained by the level of their training in

Computer Science and modern programming languages. For example, students and

researchers in Behavior Analysis are unlikely to be exposed to development using modern

1

OPEN SOURCE BEHAVIOR ANALYSIS 14

languages such as Python, C, C++, C#, Go, Dart, Rust, Java, Kotlin, Objective-C, Swift and

Object Pascal or version control systems, such as stand alone Git, GitHub or GitLab. As such,

resources and formal training are likely to be necessary to support the development of tech-

nology consistent with modern programming conventions, languages, and platforms. Aside

from benefit to the science of Behavior Analysis, training in software development would

likely enhance the prospects for behavior analysts and increase their marketability. For exam-

ple, behavior analysts trained in both the design of interventions and the technology to sup-

port them may have opportunities for work that extend much further than work with develop-

mental disabilities and substance abuse (e.g., software development, design).

Free Software, Open Source and transparent practices in research

In addition to the development of technology for behavior analytic research, the

behavior analytic community should encourage the use of free and open-source software

design and licensing. Purely from a clinical and research standpoint, the availability of source

code supports both direct replication in research as well as collaboration with other profes-

sionals. Further, open development supports transparent practices and enhances the ability of

future researchers and clinicians to understand and even extend released works. We encour-

age researchers and professionals in Behavior Analysis interested in accessible science and

technology to become part of this movement and to familiarize themselves with free software

and open source culture.

References

Alzrayer, N., Banda, D. R., & Koul, R. K. (2014). Use of iPad/iPods with Individuals with

Autism and other Developmental Disabilities: A Meta-analysis of Communication

Interventions. Review Journal of Autism and Developmental Disorders, 1(3), 179-

191. https://doi.org/10.1007/s40489-014-0018-5

An, S., Feng, X., Dai, Y., Bo, H., Wang, X., Li, M., . . . Wei, L. (2017). Development and

evaluation of a speech-generating AAC mobile app for minimally verbal children

1

OPEN SOURCE BEHAVIOR ANALYSIS 15

with autism spectrum disorder in Mainland China. Molecular Autism, 8, 52.

https://doi.org/10.1186/s13229-017-0165-5

AssistiveWare. (2018). Proloquo2Go: AssistiveWare.

Bickel, W. K., Marsch, L. A., Buchhalter, A. R., & Badger, G. J. (2008). Computerized

behavior therapy for opioid-dependent outpatients: a randomized controlled trial.

Experimental and Clinical Psychopharmacology, 16(2), 132-143.

https://doi.org/10.1037/1064-1297.16.2.132

Bickel, W. K., Pope, D. A., Kaplan, B. A., DeHart, W. B., Koffarnus, M. N., & Stein, J.

S. (2018). Electronic cigarette substitution in the experimental tobacco marketplace:

A review. Preventive Medicine, 117, 98-106.

https://doi.org/10.1016/j.ypmed.2018.04.026

Bullock, C. E., Fisher, W. W., & Hagopian, L. P. (2017). Description and Validation of a

Computerized Behavioral Data Program: “BDataPro”. The Behavior Analyst, 40(1),

275-285. https://doi.org/10.1007/s40614-016-0079-0

Catania, A. C. (2002). The watershed years of 1958-1962 in the Harvard Pigeon Lab. Journal

of the Experimental Analysis of Behavior, 77(3), 327-345.

https://doi.org/10.1901/jeab.2002.77-327

 Chayer-farrell, L., & Freedman, N.L. (1987). Behavior Research Methods, Instruments, &

Computers, 19(3), 319-326. https://doi.org/10.3758/BF03202569

CIREHA. (2018). Cboard AAC Application. Retrieved from https://www.cboard.io/

Cullen, J. M., Alber-Morgan, S. R., Schnell, S. T., & Wheaton, J. E. (2014). Improving

Reading Skills of Students With Disabilities Using Headsprout Comprehension.

Remedial and Special Education, 35(6), 356-365.

https://doi.org/10.1177/0741932514534075

Dallery, J., Raiff, B. R., & Grabinski, M. J. (2013). Internet‐based contingency management

to promote smoking cessation: A randomized controlled study. Journal of Applied

1

OPEN SOURCE BEHAVIOR ANALYSIS 16

Behavior Analysis, 46(4), 750-764. https://doi.org/10.1002/jaba.89

Dinsmoor, J. A. (1990). Academic roots: Columbia University, 1943–1951. Journal of the

Experimental Analysis of Behavior, 54(2), 129-149.

https://doi.org/10.1901/jeab.1990.54-129

Emmett-Oglesby, M. W., Spencer, D. G., & Arnoult, D. E. (1982). A TRS-80-based system

for the control of behavioral experiments. Pharmacology Biochemistry and Behavior,

17(3), 583-587. https://doi.org/10.1016/0091-3057(82)90322-7

Epstein, L. H., Dearing, K. K., Roba, L. G., & Finkelstein, E. (2010). The influence of taxes

and subsidies on energy purchased in an experimental purchasing study.

Psychological Science, 21(3), 406-414. https://doi.org/10.1177/0956797610361446

Epstein, L. H., Jankowiak, N., Nederkoorn, C., Raynor, H. A., French, S. A., & Finkelstein,

E. (2012). Experimental research on the relation between food price changes and

food-purchasing patterns: a targeted review. Am J Clin Nutr, 95(4), 789-809.

https://doi.org/10.3945/ajcn.111.024380

Escobar, R. (2014). From relays to microcontrollers: The adoption of technology in operant

research. Revista Mexicana de Análisis de la Conducta, 40(2), 127-153

https://doi.org/10.5514/rmac.v40.i2.63673

Foxall, G. R., Olivera-Castro, J., Schrezenmaier, T., & James, V. (2007). The Behavioral

Economics of Brand Choice: Palgrave Macmillan, London .

https://doi.org/10.1057/9780230596733

Foxall, G. R., Wells, V. K., Chang, S. W., & Oliveira-Castro, J. M. (2010). Substitutability

and Independence: Matching Analyses of Brands and Products. Journal of

Organizational Behavior Management, 30(2), 145-160.

https://doi.org/10.1080/01608061003756414

Ganz, J. B., Hong, E. R., & Goodwyn, F. D. (2013). Effectiveness of the PECS Phase III app

and choice between the app and traditional PECS among preschoolers with ASD.

1

OPEN SOURCE BEHAVIOR ANALYSIS 17

Research in Autism Spectrum Disorders, 7(8), 973-983.

https://doi.org/10.1016/j.rasd.2013.04.003

Gilroy, S. P. (2017). DataTracker: Cross-platform Electronic Data Collection Tool. Retrieved

from http://www.smallnstats.com/index.php?page=DataTracker

Gilroy, S. P., Franck, C. T., & Hantula, D. A. (2017). The discounting model selector:

Statistical software for delay discounting applications. Journal of the Experimental

Analysis of Behavior, 107(3), 388-401. https://doi.org/10.1002/jeab.257

Gilroy, S. P., Kaplan, B. A., & Leader, G. (2018). A Systematic Review of Applied

Behavioral Economics in Assessments and Treatments for Individuals with

Developmental Disabilities. Review Journal of Autism and Developmental Disorders,

5(3), 247-259. https://doi.org/10.1007/s40489-018-0136-6

Gilroy, S. P., Kaplan, B. A., Reed, D. D., Koffarnus, M. N., & Hantula, D. (2018). The

Demand Curve Analyzer: Behavioral economic software for applied researchers.

Journal of the Experimental Analysis of Behavior, 110(3), 553-568.

https://doi.org/10.1002/jeab

Gilroy, S. P., McCleery, J. P., & Leader, G. (2017). Systematic Review of Methods for

Teaching Social and Communicative Behavior with High-Tech Augmentative and

Alternative Communication Modalities. Review Journal of Autism and

Developmental Disorders, 4(4), 307-320. https://doi.org/10.1007/s40489-017-0115-3

Gilroy, S. P., McCleery, J. P., & Leader, G. (2018). A community-based randomized-

controlled trial of Speech Generating Devices and the Picture Exchange

Communication System for children diagnosed with autism spectrum disorder.

Autism Research. https://doi.org/10.1002/aur.2025

Hantula, D. A. (1991). A simple BASIC program to generate values for variable-interval

schedules of reinforcement. Journal of Applied Behavior Analysis, 24(4), 799-801.

https://doi.org/10.1901/jaba.1991.24-799

1

OPEN SOURCE BEHAVIOR ANALYSIS 18

Hay-Hansson, A. W., & Eldevik, S. (2013). Training discrete trials teaching skills using

videoconference. Research in Autism Spectrum Disorders, 7(11), 1300-1309.

https://doi.org/10.1016/j.rasd.2013.07.022

Heckman, B. W., Cummings, K. M., Hirsch, A. A., Quisenberry, A. J., Borland, R.,

O'Connor, R. J., . . . Bickel, W. K. (2017). A Novel Method for Evaluating the

Acceptability of Substitutes for Cigarettes: The Experimental Tobacco Marketplace.

Tobacco Regulatory Science, 3(3), 266-279. https://doi.org/10.18001/trs.3.3.3

Kaplan, B. A. (2018). beezdemand: R package containing functions to help aid in analyzing

behavioral economic demand curve data. Retrivied from

https://github.com/brentkaplan/beezdemand

Kaplan, B. A., Foster, R. N. S., Reed, D. D., Amlung, M., Murphy, J. G., & MacKillop,

J. (2018). Understanding alcohol motivation using the alcohol purchase task: A

methodological systematic review. Drug and Alcohol Dependence, 191, 117-140.

https://doi.org/10.1016/j.drugalcdep.2018.06.029

Kaplan, B. A., Gelino, B. W., & Reed, D. D. (2018). A Behavioral Economic Approach to

Green Consumerism: Demand for Reusable Shopping Bags. Behavior and Social

Issues, 27, 20-30. https://doi.org/10.5210/bsi.v.27i0.8003

Kaplan, H. L. (1985). Design decisions in a Pascal-based operant conditioning system.

Behavior Research Methods. Instruments, & Computer, 17(2), 307-318.

https://doi.org/10.3758/BF03214401

Koffarnus, M. N., Bickel, W. K., & Kablinger, A. S. (2018). Remote Alcohol Monitoring to

Facilitate Incentive-Based Treatment for Alcohol Use Disorder: A Randomized Trial.

Alcoholism, Clinical and Experimental Research. https://doi.org/10.1111/acer.13891

Lindgren, S., Wacker, D., Suess, A., Schieltz, K., Pelzel, K., Kopelman, T., . . . Waldron,

D. (2016). Telehealth and Autism: Treating Challenging Behavior at Lower Cost.

Pediatrics, 137 Suppl 2, S167-175. https://doi.org/10.1542/peds.2015-2851O

1

OPEN SOURCE BEHAVIOR ANALYSIS 19

Marsch, L., Lord, S., & Dallery, J. (2014). Behavioral healthcare and technology: Using

science-based innovations to transform practice. Oxford University Press.

Plavnick, J. B., Mariage, T., Englert, C. S., Constantine, K., Morin, L., & Skibbe, L. (2014).

Promoting Independence During Computer Assisted Reading Instruction for Children

with Autism Spectrum Disorders. Revista Mexicana de Análisis de la Conducta , 40,

20. https://doi.org/10.5514/rmac.v40.i2.63667

Pope, D. A., Poe, L., Stein, J. S., Kaplan, B. A., Heckman, B. W., Epstein, L. H., & Bickel,

W. K. (2018). Experimental tobacco marketplace: substitutability of e-cigarette liquid

for cigarettes as a function of nicotine strength. Tobacco Control.

https://doi.org/10.1136/tobaccocontrol-2017-054024

Pyramid Educational Consultants. (2018). PECS Phase III: Pyramid Group Management.

Quisenberry, A. J., Koffarnus, M. N., Epstein, L. H., & Bickel, W. K. (2017). The

Experimental Tobacco Marketplace II: Substitutability and sex effects in dual

electronic cigarette and conventional cigarette users. Drug and Alcohol Dependence,

178, 551-555. https://doi.org/10.1016/j.drugalcdep.2017.06.004

Quisenberry, A. J., Koffarnus, M. N., Hatz, L. E., Epstein, L. H., & Bickel, W. K. (2015).

The experimental tobacco marketplace I: Substitutability as a function of the price of

conventional cigarettes. Nicotine & Tobacco Research, 18(7), 1642-1648.

https://doi.org/10.1093/ntr/ntv230

R Core Team. (2017). R: A language and environment for statistical computing (Version

3.4.1): R Foundation for Statistical Computing.

Raiff, B. R., Fortugno, N., Scherlis, D. R., & Rapoza, D. (2018). A Mobile Game to Support

Smoking Cessation: Prototype Assessment. JMIR Serious Games, 6(2), e11.

https://doi.org/10.2196/games.9599

Reynolds, B., Dallery, J., Shroff, P., Patak, M., Leraas, K., & Silverman, K. (2008). A Web-

Based Contingency Management Program With Adolescent Smokers. Journal of

1

OPEN SOURCE BEHAVIOR ANALYSIS 20

Applied Behavior Analysis, 41(4), 597-601. https://doi.org/10.1901/jaba.2008.41-597

Skinner, B. F. (1956). A case history in scientific method. American Psychologist, 11(5), 221.

Sutherland, R., Trembath, D., & Roberts, J. (2018). Telehealth and autism: A systematic

search and review of the literature. International journal of speech-language

pathology, 20(3), 324-336. https://doi.org/10.1080/17549507.2018.1465123

Tomlinson, S. R. L., Gore, N., & McGill, P. (2018). Training Individuals to Implement

Applied Behavior Analytic Procedures via Telehealth: A Systematic Review of the

Literature. Journal of Behavioral Education, 27(2), 172-222.

https://doi.org/10.1007/s10864-018-9292-0

Wacker, D. P., Lee, J. F., Dalmau, Y. C., Kopelman, T. G., Lindgren, S. D., Kuhle, J., . . .

Waldron, D. B. (2013). Conducting functional analyses of problem behavior via

telehealth. Journal of Applied Behavior Analysis, 46(1), 31-46.

https://doi.org/10.1002/jaba.29

Watson, J. B. (1916). The place of the conditioned-reflex in psychology. Psychological

Review, 23(2), 89-116. https://doi.org/10.1037/h0070003

Whitcomb, S. A., Bass, J. D., & Luiselli, J. K. (2011). Effects of a Computer-Based Early

Reading Program (Headsprout®) on Word List and Text Reading Skills in a Student

with Autism. Journal of Developmental and Physical Disabilities, 23(6), 491-499.

https://doi.org/10.1007/s10882-011-9240-6

Young, M. E. (2018). A place for statistics in behavior analysis. Behavior Analysis: Research

and Practice, 18(2), 193-202. https://doi.org/10.1037/bar0000099

2

Chapter 2

A step-by-step guide to develop experiments with Axure© RP

Théo P. Robinson1

Florida Institute of Technology, FL, USA

Abstract

Programming an experiment with humans from start to finish is not always an easy task.
Depending on the tool used, it may be something just for technology professionals. In this
tutorial you will learn step-by-step how to develop a computer experiment in a very simple
way using Axure© RP. Axure© RP was originally conceived so that people in the IT field
could quickly develop a draft of the software or website that their customers need. To
demonstrate how to use the platform to create experiments, first the Axure© RP interface will
be presented and later we will build everything necessary for an experiment of choice with
two competing options. In section I, the general arrangements of stimuli on the screen will be
configured. In section II, we will add functionality to the items we created in the previous
section. In section III, we will program button 1 to reinforce responses in an FR1
reinforcement schedule. In section IV, button 2 will be configured to reinforce responses in
VR3. Section V will be used to add intervals between attempts to choose the participant.
Finally, section VI will be for configuring the output of the data collected during the
experiment. This chapter is only intended to initiate readers in the development of
experiments using Axure© RP. It is certainly possible to create more complex screens, with
more elaborate features than we learned here, including transporting the experiment to run on
online platforms with Amazon’s Mechanical Turk (“MTurk”).

1 Please send correspondence to Théo P. Robinson to theorobinson2012@gmail.com.

EXPERIMENTS WITH AXURE© RP 22

What you will need to follow this chapter:

- Axure© RP 8 (RP 9 is presently in beta testing)

- A personal computer

- An internet browser (Preferably Google© Chrome)

New researchers often aspire to conduct behavioral research with humans, but lack the

prerequisite skills necessary to program an entire experiment. In this tutorial, we are going to take a

new approach to the development of computer-based experiments. We will be doing this using

Axure© RP, an application intended for software prototyping, or “wire-framing,” as it is called.

Axure© RP is marketed to software developers who want to quickly develop a visual depiction of

an application or website, before they—or companies who hire them—spend valuable resources

developing the real application.

According to the developers of Axure© RP, Axure Software Solutions, Inc., the application

was initially developed for three reasons. First, they wanted to be able to quickly construct

prototypes of software applications. Second, the developers tried to create a platform for efficiently

collecting feedback and re-designing prototypes. Third, they wanted the prototypes to act as guides,

or outlines, for the overall development of the application. In this tutorial, we will re-purpose

Axure© RP, with the goal of developing a behavioral experiment for humans.

The developers of Axure© RP offer free classroom licenses on their website. It is highly

recommended that you (or a professor at your institution) apply for a free license because the cost

of the application is quite high. This demo was created using Axure© RP9 which—at the time of

writing this chapter—is still in beta testing. I designed this tutorial with the hope that the release of

Axure© RP9 will closely coincide with the publication of this book. You can still complete this

tutorial if you only have access to Axure© RP8, although some components of the user interface are

different between versions. For example, the Interactions tab in Axure© RP9 (Figure 1) is called

“Properties” in Axure© RP8.

EXPERIMENTS WITH AXURE© RP 23

Hopefully, the implications of Axure© RP for experimental design and implementation

will come to light throughout this tutorial. First, we will develop a general protocol for a simple

choice “experiment”. Next, we will learn how to collect data in Axure© RP. Finally, the experiment

should present data in a way that can be easily copied and pasted into a Microsoft© Excel

document.

Brief presentation of the graphical interface

Next (Figure 1) you can see a brief description of the main controls of the graphic interface

of the Axure © RP. Throughout the text, each of the major controls will be presented in bold.

Figure 1. Main UI (user interface) controls of Axure© RP. Page pane (1), Widget pane (2), Style

tab (3), Interactions tab (4), Notes tab (5), Menu bar (6), Work area (7).

Page pane (1)

Displays all of the pages involved with your project. Home, Page 1, Page 2, and Page 3

are added to the project by default. This experiment will only use the Home page and Page 1.

EXPERIMENTS WITH AXURE© RP 24

Widget pane (2)

“Widgets” are the interactive objects that the user inserts into the project. These are added

to pages by dragging and dropping them from the Widget pane (2) to the Work area (7). Widgets

include text boxes, buttons, labels, shapes, and many others.

Style tab (3)

Enables formatting the appearance of the page and the widgets on the page. Fill color,

border color, text color, line width, and many other visual characteristics can be formatted by

clicking on a widget and then clicking on the Style tab (3).

Interactions tab (4)

This is where the magic happens. It permits the construction of various interactions

between widgets. Interactions can also be assigned to the page itself by clicking in an empty part of

the Work area (7) and then clicking on the Interactions tab (4). So called, “actions,” can be

created within interactions. To clarify, interactions are triggers assigned to widgets or directly to the

page, and actions are the events that tell the Axure© RP engine what to do based on the trigger

(interaction) of the widget or the page.

Notes tab (5)

Add notes to specific widgets or the page. This experiment will not use this tab, but it is

useful for adding additional details to certain variables. For example, users might add the specifics

of various schedules of reinforcement to certain widgets they are assigned to.

Menu bar (6)

Similar to most menu bars in other computer applications (e.g., Microsoft© Office,

Microsoft© Visual Studio). Comprises File, Edit, View, Project, Arrange, Publish, Account, Help;

the most important are Project and Publish. Access the Global Variables within the Project menu,

and “Preview” or run the experiment in the Publish menu.

EXPERIMENTS WITH AXURE© RP 25

Work area (7)

Visually displays the widgets that have been added to pages. Remember, this area can be

formatted and assigned interactions in almost the same way as widgets. Additionally, remember that

the Style tab (3), Interactions tab (4), and Notes tab (5) can be accessed by left-clicking in any

empty (or “white”) area of the Work area and then navigating to the desired tab. Furthermore,

right-clicking in an empty area will open a menu, wherein elements such as gridlines and guides can

be displayed in the Work area (note that these gridlines and guides are not visible when running

the experiment). Finally, right-clicking on a widget within the Work area brings up a menu with

many options; this tutorial primarily uses the Set Hidden option of this menu.

Introduction

To begin, we will be creating a choice experiment with two concurrently available options.

These options will be presented in the form of clickable buttons—one blue and one green. The blue

button will be placed under a FR1 schedule of reinforcement, and the green button will be placed

under a VR3 schedule of reinforcement. The participants earn points by clicking on either button,

and their goal is to earn as many points as possible within one minute. In the end, the experiment

will look like Figure 2.

Figure 2. Appearance of our experiment at the end of our step-by-step guide.

EXPERIMENTS WITH AXURE© RP 26

In-Text Color Legend

Global variables are displayed in PURPLE.

Local variables are displayed in GREEN.

Widget names are displayed in RED.

Section I | An Experimental Blueprint

In this section, we will set up the general arrangement of the on-screen stimuli. We can

work out the logistics of the arrangement later; for now, let’s focus on creating the general layout of

our experiment. The buttons will be the same size and shape, but they will differ in color. Finally, a

points box will be added for the participant to keep track of his or her points.

Objectives:

- Create two boxes that are different colors (These boxes will later become buttons).

- Create a points box.

1. We will use two boxes as buttons in this experiment. Add your first button by dragging a

white box widget from the Widgets pane to the Work area, as shown in Figure 3.

Figura 3. The red arrow illustrates the drag n’ drop action (hold the left mouse button down with its

cursor over a component and then move it from one control to another by releasing the mouse

button at the target location).

EXPERIMENTS WITH AXURE© RP 27

2. Resize this box so the dimensions are 80px by 80px. To do this, look in the top-right of the

Menu bar and type “80” for the w (width) and h (height) fields, as shown in Figure 4.

Figure 4. Fields w e h represent respectively width and height of selected boxes.

3. Right-click on the box and select “Copy.” Now, right click anywhere in the Work area and

click paste. Arrange the boxes however you like—I made them horizontally aligned for the sake of

aesthetics, as shown in Figure 5.

Figure 5. The boxes were horizontally aligned for aesthetic reasons only.

4. Now that we have our boxes, we should name them. Click on the first box we made and

navigate to the Interactions tab. Replace the first box’s name, “(Rectangle Name)”, with “aTarget”.

Name the second box “bTarget”, as shown in Figure 5.

EXPERIMENTS WITH AXURE© RP 28

Figure 6. Boxes can be renamed through the (highlighted in red) field of the Interactions tab.

Naming widgets is important because it allows you to refer to these widgets directly in

future steps. Specifically, interactions and actions (covered later in this chapter) will be added

between different widgets; therefore, naming all widgets is key to not becoming confused and/or

selecting the incorrect widget when setting up an action or interaction.

5. To change the color of the boxes, click on the Style tab. The style of all widgets can be

edited within this tab. Change aTarget to blue and change bTarget to green, as shown in Figure 7.

Figure 7. The color of each box can be edited using the Color tab in the Styles tab.

EXPERIMENTS WITH AXURE© RP 29

6. Next, we will add a points box at the top of the screen to track how many points the

participant has earned. To do this, drag another white box widget to the top of the screen. Change

the dimensions of this box to a rectangle, with the dimensions: 100px by 30px. Change the name of

this rectangle to pointsBox, by following Step 4. Drag a label widget under the points box that we

just added. Change the text in this label widget to “Points”, as shown in Figure 8. We will not name

this label widget because it will not be used in future actions or interactions; it is simply a label

designed to orient the participant to the area where his or her points will be displayed.

Figure 8. You can add a label to a visual control via the Label widget.

In their current state, the green and blue boxes lack functionality with respect to what we

want them to do as buttons. Likewise, we have to add functionality to the points box as well. The

EXPERIMENTS WITH AXURE© RP 30

next section will go a little more in-depth—we’ll remove the ambiguity of those boxes and unlock

their true potential as buttons!

Section II | Adding Functionality

Objectives:

- Create two global variables to store responses on each button

- Create one global variable to keep track of points earned

- Create interactions to keep track of the number of clicks on each button

Note: Throughout this section, and future sections, we will be using the Interactions tab

of widgets to trigger certain events. It is very important that these interactions follow the same

chronological order that they are presented in these instructions. The Interactions tab follows a

chronological order throughout these next steps, so be sure to organize your actions and interactions

correctly.

7. In the Menu bar, click on “Project,” and then click on “Global Variables”, as shown in

Figure 9.

Figure 9. Global variables can be created from the Project option in the menu bar.

EXPERIMENTS WITH AXURE© RP 31

8. In the window that pops up, click the “Add” button. For now, we are only adding variables,

so we do not need to pay attention to the “Default Value” column. We will need three variables in

all: two variables will keep track of button presses (aResponses and bResponses) and one variable

will keep track of the participant’s total points (totalPoints). You will need to click the “+ Add”

button (highlighted with a red rectangle) for each new variable that you add. When all the variables

have been added, your Global Variables window should look like Figure 10. If it does, click the

“OK” button.

Figure 10. Click at the + Add button to add a new variable.

9. Next, click on the blue box, aTarget, and then navigate to the Interactions tab. Click the

“New Interaction” button, and select “OnClick” from the drop-down (highlighted in red). If this

option is not appearing, ensure that you have the blue box (aTarget) selected before you click the

“New Interaction” button, as shown in Figure 11.

EXPERIMENTS WITH AXURE© RP 32

Figure 11. Select the "OnClick" option from the drop-down menu to add a click event to the box.

10. After selecting “OnClick,” select “Set Variable Value”, as shown in Figure 12. Basically, we

are going to tell Axure© RP to set the variable, aResponses equal to the number of times the

participant clicks on the button.

Figure 12. The Set Variable Value option makes the aResponses variable equal to the number of

times the participant clicks the button.

EXPERIMENTS WITH AXURE© RP 33

11. Choose aResponses in the TARGET field, as shown in Figure 13.

Figure 13. The aResponses option in the TARGET field is found in the Interaction tab.

12. The SET TO field should have the word “text” in it. Add the following statement into the

VALUE box:

[[aResponses + 1]]

The statement tracks the number of responses made on aTarget by adding 1 to the value

already held in the aResponses variable, when the OnClick event of the aTarget button is triggered

(i.e., when the button is clicked). Then click the “Done” button, as shown in Figure 14.

EXPERIMENTS WITH AXURE© RP 34

Figure 14. Click the Done button to confirm editing the options.

13. Repeat Steps 9 through 12 for bTarget; therefore, you should replace any leading ‘a’s with

‘b’s for variables and widget names (see Figure 15). Additionally, remember that you should click

on the bTarget widget and navigate to the Interactions tab. For example, we want the VALUE box

to read:

[[bResponses + 1]]

Click the “Done” or “OK” button if your Interactions tab looks like Figure 15.

Figure 15. Click the Done button to confirm editing the options.

EXPERIMENTS WITH AXURE© RP 35

In their current state, the buttons do little to tell us about the number of responses the

participants made to each button because these data are stored in variables that we presently do not

have access to. This issue will be placed on hold for a moment, and addressed in Section VI. The

next section, Section III, will focus on the totalPoints variable and program a FR1 schedule under

the blue button, aTarget.

Section III | Programming an FR1 Schedule

In this example, the blue button (aTarget) will be under a FR1 schedule, and the green

button (bTarget) will be under a VR3 schedule of reinforcement.

Objectives:

- Program a FR1 schedule of reinforcement for responses made on aTarget

- Increment the value in the pointsBox widget by 1 whenever the schedule requirement

is met

14. Reinforcement for aTarget will be easy to construct because it is under a FR1 schedule.

Open the Interactions tab for aTarget. Add a second “Set Variable Value” action by clicking “+

Add Variable” (or the “+ Add Target” button), as shown in Figure 16.

Figure 16. Add an action by clicking on the "+ Add Variable" button (or the "+ Add Target" button).

At the time of writing this, there seems to be a bug in Axure© RP9 in which either “+ Add Variable”

EXPERIMENTS WITH AXURE© RP 36

or “+ Add Target” is shown. Either way, you are simply adding another target variable under the Set

Variable Value action.

15. Select totalPoints in the TARGET column, as shown in Figure 17, keep “text” in the SET

TO field, and type the following into the VALUE field:

[[totalPoints + 1]]

Figure 17. Select the TARGET column from the Interactions tab.

16. Again, navigate to the Interactions tab for aTarget. Click on the purple addition sign (+)

under your most recently added action, as shown in Figure 18. This will add a new action to be

carried out when the OnClick event is triggered.

EXPERIMENTS WITH AXURE© RP 37

Figure 18. The purple button (highlighted by the red square) allows you to add a new action.

17. Select the “Set Text” option from the drop-down, as shown in Figure 19.

Figure 19. "Set Text" option, highlighted by the red square.

EXPERIMENTS WITH AXURE© RP 38

18. In the TARGET box, select your pointsBox widget. Keep “text” in the SET TO box. Finally,

double-click on the “fx” (function) button to the right of the VALUE box, as shown in Figure 20.

Figure 20. "fx" button, highlighted by the red square.

19. A new window will pop up (see Figure 21); this window has two text areas. The top area is

where you enter the function that you would like Axure© RP to carry out whenever the action event

is triggered. In this case, you want Axure© RP to add 1 to totalPoints whenever the OnClick action

is triggered for aTarget, and you want the output of this function/calculation to be displayed in your

pointsBox widget.

Figure 21. The bottom area of this window is where you assign local variables which are discrete

to this specific action, and these variables are not stored as global variables.

EXPERIMENTS WITH AXURE© RP 39

20. To begin, click “Add Local Variable” in the bottom area of the window. This will add

LVAR1 as a local variable. Keep the name as LVAR1 (you can change this to a different name if

you want, but make sure to keep it consistent), and keep “text on widget” entered into the middle

drop-down. In the last drop-down, select the widget pointsBox. With that, you just declared LVAR1

as a local variable, which holds the text on the pointsBox widget as its value, as shown in Figure 22.

Figure 22. LVAR1 declared as a local variable will keep its value equal to the text of the pointsBox

widget.

21. The next step is to program the experiment to increment the participant’s points by 1,

whenever the aTarget widget is clicked. You have already defined LVAR1 as the text on pointsBox,

so you simply need to type the following into the top area of the window (see Figure 23):

[[LVAR1 + 1]]

EXPERIMENTS WITH AXURE© RP 40

Figure 23. The functions allow you to program the points of the participant.

This will tell Axure© RP to add 1 to whatever value is already in pointsBox every time the

participant earns a point.

In this section, we placed responses on aTarget under a FR1 schedule of reinforcement. In

the next section, we will place bTarget under a VR3 schedule of reinforcement. Play close attention

to this next section, because it includes steps that are more complex than what we have done so far.

Section IV | Programming a VR3 Schedule

Here, we will construct a process that randomly generates a value of either 0, 1, or 2

whenever the participant responds to bTarget; therein, the participant’s response will only be

reinforced if the value generated is 0.

EXPERIMENTS WITH AXURE© RP 41

Note: Before I decided to use this technique to generate VR schedules, I ran five sessions

of 20 trials, in which each reinforcer delivery signaled the end of the trial. The number of responses

(clicks) made within each trial was recorded. The number of responses was averaged at the end of

each 20-trial session, to generate the average rate of reinforcement delivery. The results of this test

are displayed in Table 1. These values do not comprise a rectangular distribution. For an alternative

way to generate VR response requirements, see Bancroft and Bourret (2008).

Table 1. Number of responses per attempt over sessions with response requirements under VR3.

Trial
Session

1 2 3 4 5
Number of Responses

1 2 2 1 1 1
2 2 1 5 2 2
3 1 8 3 1 7
4 1 2 1 6 2
5 1 3 4 2 4
6 1 2 1 4 1
7 4 3 2 4 5
8 6 3 1 2 1
9 8 1 3 5 2

10 3 3 1 1 1
11 6 2 2 1 4
12 1 4 2 4 12
13 4 3 4 3 6
14 1 8 1 6 1
15 9 1 2 2 3
16 1 13 1 2 1
17 2 3 12 1 1
18 7 2 2 1 1
19 3 1 1 1 3
20 3 2 7 1 2

In-Session Average 3.30 3.35 2.80 2.50 3.00
All sessions Average 2.99

Objectives:

- Program in a VR3 schedule of reinforcement for bTarget

- Increment the value in the pointsBox widget by 1 whenever the schedule requirement

is met

EXPERIMENTS WITH AXURE© RP 42

22. Begin by creating another global variable, and name it sch. For a reminder of how to create

new variables, see Step 8 (Project -> Global Variables). Enter the value, “3” (without quotes) into

the “Default Value” column of the window. Basically, this variable represents the average response

requirement for your VR schedule—in this case, it is 3. For example, if you want assign a VR6

schedule of reinforcement under the bTarget button, you would enter a “6” into the Default Value

column. When your Global Variables window matches Figure 24, click OK.

Figure 24. Creating and configuring a global variable.

23. We need to create a widget for “deciding” whether or not to provide reinforcement. When

the participant clicks on the bTarget button, it will generate a random number (either 0, 1, or 2).

Then, the deciding widget will determine if the response should be reinforced based on the

randomly generated value. Specifically, reinforcement is delivered only if “0” is the randomly

generated value whenever the participant clicks bTarget.

Create one box widget, name it bDecide, and make the dimensions 30px by 30px. Place the

widget in the top-left corner of the screen. Right click on bDecide and select Set Hidden to hide it

from the participant, as shown in Figure 25. Even though the widget is hidden, it will still serve the

EXPERIMENTS WITH AXURE© RP 43

function that we are going to assign it—the widget will simply not be visible or useable by the

participant.

Figure 25. The widget in the upper left corner will not appear for the participant because it was

hidden. Once you have hidden the bDecide widget, it will appear yellow on the Axure© RP Work

area, but it will not appear in the browser for the participant.

24. Click on the bTarget button and navigate to the Interactions tab. Insert a “Set Text” action

(using the purple “+” sign) and set the widget, bDecide, as the target. Enter this formula into the

VALUE box:

[[Math.floor(Math.random() * (sch))]]

This formula (see Figure 26 also) will set the text on the widget bDecide to a random

number between 0 and the value assigned to sch, and round it to the nearest whole number

(whenever bTarget is clicked).

EXPERIMENTS WITH AXURE© RP 44

Figure 26. The Math.random function generates a random value between 0 and 1, then the

Math.floor function rounds this value to the nearest whole number.

25. Now, we will add a triggering event to bTarget, which will activate the “decision” process

for the randomly generated value on bDecide. To do this, add a “Fire Event” action to bDecide;

select bDecide as the TARGET, and OnClick as the EVENT, as shown in Figure 27.

EXPERIMENTS WITH AXURE© RP 45

Figure 27. Ensure that your Interactions tab for bTarget matches the image. It is important that

these actions follow the exact chronological order as the ones in the image.

26. In this step, we will add a conditional statement which adds 1 point to the totalPoints

variable, as well as insert this new totalPoints value into the pointsBox widget, only when the

randomly generated value on bDecide equals 0.

Open the Interactions tab for the bDecide widget. First, create a new OnClick interaction

with a Set Variable Value action. The TARGET variable is totalPoints; keep “text” in the SET TO

field; and enter the following into the VALUE field:

[[totalPoints + 1]]

This action (see Figure 28) adds 1 point to the totalPoints variable. The next step will

display the current points in the pointsBox widget.

EXPERIMENTS WITH AXURE© RP 46

Figure 28. The VALUE column has a formula that adds 1 point to the variable "totalPoints" in the

TARGET column.

27. Add a Set Text action to bDecide, after the Set Variable Value action. The TARGET is the

pointsBox widget; change the SET TO drop-down field to “value of variable”; and select totalPoints

as the VARIABLE. This will update the pointsBox widget to display the participant’s current points,

whenever the participant earns a point under the VR3 schedule, as shown in Figure 29.

EXPERIMENTS WITH AXURE© RP 47

Figure 29. The settings highlighted by the blue square allow you to show the participant's current

points each time he wins points.

28. Now, we will add the conditional statement (called a “case” in Axure© RP) to the OnClick

interaction of bDecide. Right click the OnClick action and select “Add Case”, as shown in

Figure 30. Name the case, decideCase, press enter, and then double-click on the interaction to open

the Condition Builder window. The Condition Builder window can also be opened by clicking on

the small, gray “IF” button to the right of the OnClick interaction.

Figure 30. Context menu with the "Add case" option appears when you right-click.

EXPERIMENTS WITH AXURE© RP 48

29. In the Condition Builder window, we want the interaction to be carried out if the text on

bDecide (i.e., “This” widget) equals 0; thus, click on the “+ Add Logic” button and keep “text on

widget” in the first field, and “This” in the second field. The second field designates which widget

will be focused on in the case—selecting “This” in this field is the same as selecting bDecide in this

field because they both refer to the same widget. Next, keep “equals” in the third field. The fourth

field should contain the select “text”. Finally, simply enter “0” in the last text field of the Condition

Builder window. Your Condition Builder window should look like Figure 31. Click OK.

Figure 31. Configuring the condition so that the interaction is performed if the text in bDecide

equals 0.

In the previous two sections, we added functionality to aTarget and bTarget by assigning

schedules of reinforcement to both stimuli. Additionally, we used widget actions to trigger deciding

events for our variable ratio schedule.

EXPERIMENTS WITH AXURE© RP 49

Section V | Adding Intervals

There will be three, 10 s intervals in this demo experiment. These intervals were kept brief

for the purposes of this demonstration—real experimental arrangements would include many more

intervals. The participant’s total points will be displayed throughout the session, but only the

experimenter will have access to the data for responding throughout each of the intervals.

Objectives:

- Add three, 10 s intervals to the experiment

- Add six new global variables

- Store the number of responses in one of these new variables at the end of each

interval (To do this, we will take a quick “snapshot” of our other global variables,

aResponses and bResponses, by saving the values of each of these variables in one of the

six new variables at the end of each interval)

- Reset the value of aResponses and bResponses to accurately reflect responding

during each interval (If aResponses and bResponses are not reset, the six variables

responsible for storing the number of responses will not accurately represent the number of

occurrences per trial. It would not be necessary to reset these variable values if we were

interested in analyzing these data using a cumulative record.)

30. To begin, we will have to add six new variables to store the data from each response at the

end of each 10 s interval. Add the following global variables, and keep their default values blank:

a1, a2, a3, b1, b2, and b3.

31. So far, we have been building interactions between widgets. Now, we will build interactions

between the page and widgets. Click in any part of the white space in the Work area to deselect

any widgets you might have selected. Navigate to the Interactions tab and add a new OnPageLoad

interaction. The OnPageLoad interaction is triggered when the page loads. Select “Wait” as the

EXPERIMENTS WITH AXURE© RP 50

action for this interaction and enter “10000” in the WAIT FOR field, as shown in Figure 32. Click

Done.

Figure 32. The OnPageLoad interaction fires when the page loads.

The first 10 s interval has been set. Next, we need to store the number of responses, during

each interval, in two of our six new global variables.

32. At the end of each 10 s interval, the data will be stored in two of the variables we created in

Step 29. When the first interval ends, the number of responses on aTarget and bTarget will be stored

in the variables a1 and b1, respectively. Additionally, the second interval will store the number of

responses on the buttons in the a2 and b2 variables. Finally, the third interval will use the variables

a3 and b3.

If you are not already on the Interaction tab for the page, begin by navigating to the

Interaction tab for the page. Click the purple “Insert Action” button (“+”) under the same

OnPageLoad interaction, and insert a Set Variable Value action. The TARGET will be a1. In the

SET TO field, select “value of variable”. Select aResponses in the VARIABLE field, as shown in

Figure 33. Click “OK”.

EXPERIMENTS WITH AXURE© RP 51

Figure 33. SET TO field allows selection of the "value of variable" option. Then the VARIABLE

field allows the variable aResponses.

33. Next, we will repeat Step 32 for the b1 variable. First, click the “+ Add Target” button under

the Set Variable Value we just created. Select b1 in the TARGET field; select “value of variable” in

the SET TO field; finally, select bResponses in the VARIABLE field. Click “OK”.

Figure 34. After repeating Step 32, the column "Set Variable Value" should look like this.

EXPERIMENTS WITH AXURE© RP 52

34. We need to reset the value of aResponses and bResponses. If we do not reset these variable

values, the values from the second interval will include those responses in the first interval and the

second interval, and so on for the third interval.

Add a new target under the colomn Set Variable Value actions we just created, by clicking

the “+ Add Target” button. Select aResponses in the TARGET field; keep “text” in the SET TO

field; finally, enter “0” into the VALUE field, as shown in Figure 35. Click the “OK” button.

Figure 35. Settings from Step 34.

35. Add an additional target. Repeat Step 34 but select bResponses in the target field.

EXPERIMENTS WITH AXURE© RP 53

Figure 36. Settings after repeating Step 34.

36. Now, we will focus on the second interval. Under the same OnPageLoad interaction, add a

new Wait action by clicking the purple “+” symbol. Enter “10000” into the WAIT FOR field, as

shown in Figure 37, and click “OK”.

Figure 37. Settings after Step 36.

EXPERIMENTS WITH AXURE© RP 54

37. Insert another Set Variable Value action under the OnPageLoad interaction, by clicking the

purple “+” symbol. Select a2 in the TARGET field; “value of variable” in the SET TO field; and

aResponses in the VARIABLE field, as shown in Figure 38. Click “OK”.

Figure 38. Settings from Step 37.

EXPERIMENTS WITH AXURE© RP 55

38. Repeat Step 37 for the b2 variable by adding another target. Select b2 in the TARGET field;

“value of variable” in the SET TO field; and bResponses in the VARIABLE field. Click “OK”.

39. Next, repeat Steps 34 and 35 to reset the aResponses and bResponses before the next

interval. So far, your page Interactions tab should look like Figure 39.

Figure 39. Settings after repeating Step 34 and Step 35.

40. Lastly, we will construct the components of the third interval. Begin by adding a Wait action

(purple “+” symbol) under the same OnPageLoad interaction we have been using. Enter “10000”

into the WAIT FOR field and click “OK”.

EXPERIMENTS WITH AXURE© RP 56

41. Add a Set Variable Value action with a3 as the TARGET. Select “value of variable” in the

SET TO field, and aResponses in the VARIABLE field. Click “OK”.

42. Click “+ Add Target” under this Set Variable Value action, and select b3 as the TARGET;

select “value of variable” in the SET TO field; and bResponses in the VARIABLE field. Click

“OK”. It is not necessary to reset the aResponses and bResponses variables, because this is our last

interval.

When this section is completed, your Interactions tab for the page should look like

Figure 40.

Figure 40. Settings after Step 40.

In this section, we created three, 10 s intervals. We also stored this interval values in

Global Variables that we created. In the next section, you will learn how to output the data

generated by participants during this demo experiment.

Section VI | Data Output

In this section, we will organize the data from all three intervals into separate text fields,

which can be copied and pasted into Microsoft© Excel. Outputting the data to a table is not the

EXPERIMENTS WITH AXURE© RP 57

most ideal method for displaying the data if you have many variables because the table generated by

Axure© RP cannot be pasted into Microsoft© Excel very efficiently. Using the method you are

about to learn might still require you to organize the data after pasting it into Microsoft© Excel.

Outputting the data as a string in a text box (with commas as delimiters) is the most ideal method

for data output. This method allows you to copy and paste the string into Microsoft© Excel and

then use Microsoft© Excel’s built-in “Text-to-Columns” wizard to organize the variable values into

individual columns.

Objectives:

- Create two text field widgets which will contain the variable values for each

interval

- Create a button for displaying the variable values

43. Begin by navigating to the Page pane (1 in the guide). Double-click Page 1 under the Home

page (see Figure 41) and ensure that there are no widgets on this page (IMPORTANT: Make sure

that you have Page 1 selected before you delete any widgets!). If there are already widgets on Page

1, delete them all.

Figure 41. Double click on Page 1 below the Home page. If Page 1 is not listed, create another page

by clicking the white square with a plus sign, to the right of the search (magnifying glass) button.

Name this new page, “Page 1”.

44. Next, go back to the Home page and navigate to the Interactions tab for the page

(reminder: click on any white space in the Work area to deselect any widgets, and then go to the

EXPERIMENTS WITH AXURE© RP 58

Interactions tab). Create another action under the OnPageLoad interaction. Select the Open Link

action. Select Page 1 in the LINK TO field, as shown in Figure 42. Click “Done”.

Figure 42. Step 44 settings highlighted by the red square.

45. Open Page 1 again. Drag and drop two Text Field widgets into the Work area, as shown in

Figure 43. Place these Text Fields in a visible location on the page, and ensure that one Text Field is

above the other (see Figure 43). Name the top Text Field, aResults; and the bottom Text Field,

bResults.

EXPERIMENTS WITH AXURE© RP 59

Figure 43. Two text fields (lower left corner) have been added to the Work area (right).

46. Add two label widgets to the immediate left of each of these Text Fields. Replace the text in

these widgets with “a” and “b” to specify which target values they represent. Specifically, place the

“a” label to the left of the aResults widget, and place the “b” label to the left of the bResults widget,

as shown in Figure 44.

EXPERIMENTS WITH AXURE© RP 60

Figure 44. The label widgets do not need to be named, they are only added to help guide the

experimenter to the relevant data.

47. Add a regular, white button widget to the page. Replace the text on the button with “Display

Results”. Name this button widget, resultsButton. See Step 4 for a reminder of how to set widget

names, as shown in Figure 45.

EXPERIMENTS WITH AXURE© RP 61

Figure 45. "Display Results" button added to the desktop.

48. With the resultsButton selected, navigate to the Interactions tab. Add a new OnClick

interaction and choose the Set Text action. Select aResults as the TARGET widget; keep the SET

TO field as “text”; and enter the following into the VALUE field:

[[a1]], [[a2]], [[a3]]

When using variables, place them in double brackets (i.e., [[variableName]]). The same

applies for formulas and functions (e.g., “[[1 + 2]]”). What we have done, with the above bit of

code, is tell Axure© RP to list the variables with commas and a space between each variable when

the resultsButton has been clicked (see Figure 46). Click “OK” after you have entered this text.

EXPERIMENTS WITH AXURE© RP 62

Figure 46. Step 48 settings highlighted by the blue square.

49. With the Interactions tab still open for resultsButton, click the “+ Add Target” button under

the Set Text action. Select bResults as the TARGET widget; keep “text” in the SET TO field; and

enter the following into the VALUE field:

[[b1]], [[b2]], [[b3]]

Once you have entered this, click “OK”, as shown in Figure 47.

EXPERIMENTS WITH AXURE© RP 63

Figure 47. Step 49 settings highlighted by the blue square.

The data from aResults and bResults can be easily copied into Microsoft© Excel.

Microsoft© Excel comes with a wizard for converting text to columns. Ensure that you specify

commas as delimiters within the Text-to-Columns wizard in Microsoft© Excel.

Conclusion

In this tutorial, we created a simple choice experiment which consisted of two buttons and

a points box. One button was under an FR1 schedule of reinforcement and the other was under a

VR3 schedule. We also learned how to output participants’ data in a way that makes it easy to paste

into Microsoft© Excel.

One limitation of this specific approach is that researchers planning to implement a study

made in Axure© RP will have to be physically present throughout the participant’s engagement

EXPERIMENTS WITH AXURE© RP 64

(although, remote participation is discussed in the next paragraph). Additionally, Axure© RP global

variables are stored in the URL field of the browser. This limitation affects almost all browsers, and

most web developers stick to a limit of 2000 URL characters. Given all of this, Axure© RP’s global

variables must be used somewhat conservatively throughout the development stage—a limitation

that researchers will probably not have to worry about, yet should still keep in mind.

Altogether, Axure© RP has far-reaching implications. Specifically, it has the capacity to

facilitate the construction of scientific experiments, comprised of multiple web-based programming

languages (e.g., JavaScript, CSS). The fact that these experiments consist of web-based code

enables researchers to upload these experiments to personal or institutional websites and collect

data from participants from almost anywhere in the world. For example, at the time of writing this

chapter, I am recruiting participants and running my dissertation through a combination of an

experiment I created in Axure© RP8, and Amazon’s Mechanical Turk (“MTurk”). This combination

made it somewhat easy for me to collect over 250 reliable data sets, in what took me a total of about

125 h of re-design and re-implementation. Unfortunately, the methodology for applying

experiments made in Axure© RP to MTurk are too extensive to include in this chapter; although, I

hope to write a second guide for that method soon.

References

Bancroft, S. L., & Bourret, J. C. (2008). Generating variable and random schedules of
reinforcement using Microsoft Excel macros. Journal of Applied Behavior Analysis, 41(2),
227-235.

Chapter 3

Developing an application to register continuous responses with shiny package in R
environment

Ricardo Fernandes Campos Júnior1

Universidade de São Paulo, SP, Brasil

Julia Zanetti Rocca2

Universidade Federal de Mato Grosso, MT, Brasil
Instituto Nacional de Ciência e Tecnologia sobre Comportamento, Cognição e Ensino

Translators3

Luiz Alexandre Freitas
Universidade Federal de Mato Grosso, MT, Brasil

Théo P. Robinson
Florida Institute of Technology, FL, USA

Abstract

To register a response directly is a frequent and essential part of the behavior analysts’ job.
There are computer programs to assist with this task already, but they are generally inflexible
and require payment. Our objective in this chapter is to guide the reader in developing a basic
application to measure behaviors and building cummulative frequency records during data
post processing. The application will be created using the R programming language, through
RStudio IDE with shiny, lubridate and ggplot2 extension packages.

1 Contact Ricardo Fernandes Campos Junior at ricardofc@gmail.com. You will find Ricardo on GitHub at
https://github.com/RicardoFCJ.

2 Contact Julia Zanetti Rocca at profjuliarocca@gmail.com.

3 All filenames and names of variables in the example programming codes were translated to English to help
readers. However, in the original code some names are in Brazilian Portuguese as seen in the first author’s
GitHub project for this chapter.

mailto:ricardofc@gmail.com
mailto:profjuliarocca@gmail.com
https://github.com/RicardoFCJ

RESPONSE RECORDING WITH SHINY IN R 72

“Measurement (applying quantitative labels to describe
and differentiate natural events) provides the basis for
all scientific discoveries and for the development and
successful application of technologies derived from
those discoveries. Direct and frequent measurement
provides the foundation for applied behavior analysis.
Applied behavior analysts use measurement to detect
and compare the effects of various environmental
arrangements on the acquisition, maintenance, and
generalization of socially significant behaviors.”
(Cooper, Heron, & Heward, 2014, p. 93).

According to Cooper, Heron, and Heward (2014), direct and frequent measuring of

the organism’s responses is a fundamental part of behavior analysts’ jobs, whether in

academic or professional settings. In fact, the strategies for defining and identifying classes of

behaviors to be measured, as well as the description of their topographies, have been

continuously investigated by researchers in the field (Springer, Brown, & Duncan, 1981) and

require specific and continuous training for practitioners.

However, besides the theoretical difficulties associated with measuring, to register

responses accurately during intervention sessions is a challenge for practitioners (LeBlanc et

al., 2016). Generally, practitioners and experimenters should manipulate contingencies and,

simultaneously, keep records of frequency, duration and/or intensity of target behaviors, to be

able to follow the development of the individuals’ repertoires. In order to do that, in some

cases, sessions are video recorded and responses are registered later. This is an effective

solution, but it considerably increases the amount of time and resources required to keep the

analysis up to date.

Several practitioners and scholars have begun using software applications with the

ability to record behavioral data through smartphones, tablets, or laptops (Mudford, Locke, &

Jeffrey, 2011). These programs are advantageous because they facilitate faster and more

effective registering. Importantly, they give practitioners the ability to construct graphs or

tables in real-time, or immediately after the session. Many of these applications are available

on the market, however, they usually require payment or have low flexibility with respect to

the specific needs of each client, practitioner, and/or context.

RESPONSE RECORDING WITH SHINY IN R 73

With this in mind, the purpose of this chapter is to guide readers in the development

of a basic application to register the occurrence of behaviors of participants, experimental

subjects, or clients and, subsequently, plot a cummulative frequency graph for the session.

1. Prerequisites

Before we start, it is important that the reader has basic knowledge of R

programming language and RStudio programming environment. Also, you should already

have these programs installed on your computer, as well as some other packages, including:

shiny (Chang et al., 2018), lubridate (Wickham & Grolemund, 2011) and ggplot2 (Wickham,

2016). For a basic introduction to R see Campos Junior and Rocca (2018).

To be brief and go direct to the point, this chapter will not extensively define the

features of each employed function. Therefore, it is important that the reader always checks

the help() of those functions presented in this chapter.

2. Initial steps

Shiny applications are created directly in R. While they work, an R session is active,

processing all actions inside the application. A shiny application has two main programming

blocks: ui and server. All elements with which the user will interact are programmed inside

ui (user interface). Inside server, all commands and actions made by the user in ui are

evaluated and processed. In R, server and ui are interdependent, so it is impossible to run one

without the existence of the other. However, in the programming phase, it is possible to build

ui with an empty server, as is shown below. In this case, the components of the first will not

work, but you will be able to see what your application looks like.

To get started, it is necessary to load a shiny package that has all basic functions for

the application to run. Following that, ui and server variables should be declared. There are

several ways to structure these variables, although to facilitate the understanding of the

general operation of shiny applications, they will be structured in the most basic form, as in

Example 1.

RESPONSE RECORDING WITH SHINY IN R 74

Example 1

library(shiny)
ui <- fluidPage()
server <- function(input, output, session) {}
shinyApp(ui, server)

See that the function server has some arguments (input, output and session), such

arguments define variables that will be used inside the same function. These arguments are

necessary so that the objects in ui can be used and manipulated inside the server.

In the programming code within this chapter, we will use a style of formatting

named indentation. This style consists of aligning the code or some of its parts farther to the

right or to the left in order to create a hierarchical structure. Indentation is used to better

clarify the hierarchy of the code, and the algorithm structure. The lines below show one form

of indentation to facilitate readers’ understanding:

Example 2

1. Title
 1.1. Subtitle
 1.2. Other Subtitle
 1.2.1. Part of the previous subtitle
 1.3. One more subtitle
2. Etc

3. User Interface (ui)

In this phase, all ui elements of the application presented in this chapter will be

programmed. All elements that the final user will interact with are programmed inside the

user interface. Further, the structure of those elements will be programmed, such that they

will be visually organized and displayed in a functional manner. An important feature of the

ui is that all concatenated elements in it should be separated with single commas, just like the

values in a vector in basic R coding. For this reason, the following examples that demonstrate

various elements together will always be separated with single commas.

RESPONSE RECORDING WITH SHINY IN R 75

3.1. Layout
The proposed layout for the application that will be built here will follow the model

shown in Figure 1. On the top, there will be a field for the experimenter to put his/her name

and the name of the participant, as well as a clock that will be used to record the time of

session, and buttons to start and pause the clock. The central part includes the buttons on

which specific behaviors will be recorded during session. On the bottom, there will be

buttons to export recorded data in csv format (datasheet) and to plot a cummulative frequency

graph for the session.

Participant 00:00 Experimenter

Start Pause

Behavior 1 Behavior 2

Behavior 3 Behavior 4

Export data Export graph

Figure 1. Initial draft of the application.

3.1.1. Fluid rows (fluidRow() e column())

The use of fluid rows is the simplest way to organize ui elements, and this is what

we are doing in this chapter. It is built with the function fluidRow(). Setting a layout through

this method is made by creating rows, which aim to ensure that elements of interface will be

visually aligned. On the other hand, these rows are split in 12 columns, which are used to

ensure the elements fill the right horizontal space in the layout. Thus, the layout created with

RESPONSE RECORDING WITH SHINY IN R 76

this method may have its basic structure conceived as an Excel spreadsheet, with 12 columns

of horizontal space and as many rows as necessary.

One of the advantages of using fluidRow() to build layouts is that columns and rows

always self-adjust to fill all spaces in the browser. Additionally, the function column() allows

us to merge columns in one element so that it will fill the space corresponding to several

columns. Also, this function can be used to subdivide one or many “cells” on the layout in its

own set of rows and columns. The first argument of the function column() will always be the

columns to be filled, followed by the elements that compose it. Another argument that could

be used in this function is align, which serves to align the elements in specific positions

inside the columns, taking the values left, center, and right. Figure 2 will help readers

visualize the operation of these functions.

Example 3

fluidRow(
column(12,align=”center”,element1(),element2(),element3()),
column(12,
column(3,align=”center”,element1(),element2()),
column(9,align=”center”,element3())),
column(12,
column(2,align=”center”,element1()),
column(8,align=”center”,element2()),
column(2,align=”center”,element3())),
)

Functions named as elementX() at Example 3 are for illustrative purposes only.

3.1.2. Interactive elements

Figure 1 shows a draft on which the development of the application will be based.

There are some textual elements in it, such as: the text box, where we insert names of

participant and experimenter, and the line that displays session time. The other elements are

buttons on which users will click in order to: start or pause the clock, record occurrence of

behaviors, export session data, and export the graph. Next, we will go over these interactive

elements, explaining how to create each one of them.

RESPONSE RECORDING WITH SHINY IN R 77

Figure 2. Example of positions of elements using the functions fluidrow and column from

Example 3. Numbers in the figure are only to illustrate each row and column position

according to the programming in the example. Gray lines that separate rows and columns are

also for illustrative purposes only.

3.1.2.1. Text input (textInput())

In Figure 1, the type of interactive element used to make the input of the names of

participant and experimenter will require the use of the function textInput. This function is

often used when the user needs to insert some textual information freely – in this case, the

names of the participant and the experimenter. This function has three main arguments,

inputId, label and value. The argument inputId is used to create a unique identification for the

element, such identification will be used to get the data and manipulate the elements inside

the server. For this reason, that argument is used in the majority of the ui elements of shiny.

The argument label is used to give the interactive element a name, so users can easily identify

what it is for. In the example we used in the draft (Example 3), the argument label is empty.

Finally, the other argument is value, and it is used to tell the element its initial value. In the

example on Figure 1, the value of value is “Participant”. Note that if the word “Participant”

had been used in the argument label instead of value, this word would be on top of the

textbox, not inside. In Figure 3, we filled label in the element of participant, and value is

empty (“”). Differently, we filled value of experimenter with “Experimenter” and label is

empty, as an example for readers.

Participant

Experimenter00:00

Participant 00:16 Experimenter

RESPONSE RECORDING WITH SHINY IN R 78

Example 4

textInput(inputId=“participant”,label=“Participant”,value=””),
textInput(inputId=“experimenter”,label=””,value=”Experimenter”)

The result of the elements programmed with the codes in Example 4 can be viewed

in Figure 3. However, some programming codes were omitted in Example 4 because they

were either previously explained or will be explained later in this chapter.

Figure 3. Result of the text boxes programmed in Example 4.

3.1.2.2. Text output (textOutput())

The main argument for textOutput is inputId. The reason for that is because size,

color, and content will be manipulated inside the server of the application. In Figure 1, the

only text output is the clock, which is initiated with the value “00:00” and modified after the

button “Start” is clicked. Figure 3 shows the clock in its initial value, a value that is generated

inside the server. Example 5 shows the code that will generate the text output that will

generate the clock. In the same way, a warning is displayed when one of the behavior buttons

is pushed, indicating that a behavior was recorded. The text output for both, and how they

relate to the server, will be explained further in the chapter.

Example 5

textOutput(inputId=“clock”)

The result of the code in Example 5 is displayed in Figure 4, but some programming

codes were omitted because they have been previously explained or will be explained later. The

code that controls the clock and generated the numbers 0:16 will also be explained below.

Figure 4. The central part of the figure displays the output for the element programmed in

Example 5.

Start Pause

Behavior 1

Behavior 3 Behavior 4

Behavior 2

Export data Export graph

RESPONSE RECORDING WITH SHINY IN R 79

3.1.2.3. Action buttons (actionButton())

Considering only the initial outline proposed for the application, the sole

interactive element of the ui that we need to cover is action buttons. These trigger actions

in the server that will make the clock start or pause, record target behaviors, export the

spreadsheet, or plot the graph. ActionButton main arguments are inputId and label. They

have the same function as the previously discussed arguments – they create a unique

identification and denote what the interactive element is for. However, unlike textInput,

the label of actionButton will always be inside the created button. Also, we are able to

modify some basic features of style using CSS programming code inside the

actionButton. In Example 6, the argument style will be used to modify the size of the

buttons.

Example 6

actionButton("start","Start"),actionButton("pause","Pause"),
actionButton("behav1","Behavior 1", style=”padding:15px 35px; fontsize:100%”),
actionButton("behav2","Behavior 2", style=”padding:15px 35px; fontsize:100%”),
actionButton("behav3","Behavior 3", style=”padding:15px 35px; fontsize:100%”),
actionButton("behav4","Behavior 4", style=”padding:15px 35px; fontsize:100%”),
actionButton("expdata","Export data"),
actionButton("expgraph","Export graph")

The result of the element programmed with the code in Example 6 is displayed in

Figure 5.

Figure 5. Preview of the outcome of the programming code that created buttons, as shown in

Example 6.

RESPONSE RECORDING WITH SHINY IN R 80

3.2. Final interface

Now that the basic elements of the ui and how to organize them in this project have

been presented, it is possible to put this all together to get the desired result. The code below

shows the final code of the ui, and Figure 6 displays the final result. Note that, despite that

the clock in the picture is functional, it is still necessary to program the elements in the server

of the application to make it operational.

ui <- fluidPage(
 fluidRow(
 column(12,column(4,textInput("participant","",value="Participant")),
 column(4,align="center",h2(textOutput("clock"))),

column(4,textInput("experimenter","",value="Experimenter"))),
 column(12,column(4),
 column(4,align="center",actionButton("start","Start"),

actionButton("pause","Pause")),
 column(4)),
 column(12,align="center",actionButton("behav1","Behavior 1",
style='padding:15px 35px; font-size:100%'),
 actionButton("behav2","Behavior 2", style='padding:15px
35px;
font-size:100%')),
 column(12,align="center",actionButton("behav3"," Behavior 3",
style='padding:15px 35px; font-size:100%'),
 actionButton("behav4"," Behavior 4", style='padding:15px
35px;
font-size:100%')),
 column(12,align="center",textOutput("warning")),
 column(12,actionButton("expdata","Export data"),
 actionButton("expgraph","Export graph"))
)
)

4. Server

At this step, the elements that respond to the interactions of the user inside the ui

will be programmed. In the server, programming blocks will be built the same way a script in

R is written. However, the blocks are read selectively, depending on the interaction of the

user or the intention of the developer. Some parts will run only once, others will run dozens

of times.

Start Pause

Behavior 1

Behavior 3 Behavior 4

Behavior 2

Export data Export graph

Participant 00:10 Experimenter

RESPONSE RECORDING WITH SHINY IN R 81

Figure 6. Final interface for the application. The button “Start” was clicked for the clock to

appear.

The general operation of the server of the application shown here will occur as

follows:

1) By starting the application, the clock is put in its initial state, that is “00:00”.
Additionally, a table will be created to record the name of experimenter,
participant, and what behavior occurred, and when that happened.

2) By clicking the “Start” button, the clock will start running and, every 1 s, the
clock will be updated to show the current duration of the session.

3) By clicking on any of the behavior buttons, a warning message will be sent to
the user interface confirming that a behavior was recorded at that moment. In
addition to that, an instance of the behavior and the moment it occurred is
recorded on the table.

4) By clicking “Pause”, the end of a session is recorded (so that the graph will be
created with the correct limit) and the clock goes back to “00:00”.

5) By clicking “Export data”, a “.csv” file is created with the name
“Experimenter-Participant.csv” that will be saved in the same folder as the
application. This file contains all recorded behaviors and the time they
occurred.

6) By clicking “Export graph”, one or several “.png” files with the name
“Behavior-N.png” will be created. N is the number of the behavior (1, 2, 3, or
4), and it will be saved in the same folder as the application. This file is a
cummulative frequency record containing each behavior in that session.

7) Finally, in case the application is closed and there were unsaved recorded
behaviors, the application will save (preventively) by itself a file named
“Experimenter-ParticipantAutoSaved.csv”.

Next, we will present the server elements that will be used in the application.

4.1 Arguments of the Server

In section 2, the function server was presented, and it had three arguments: input,

output and session. These arguments correspond to objects inside the server, which can be

used to access other specific objects in it. These arguments have the list type structure,

RESPONSE RECORDING WITH SHINY IN R 82

because inside them there might be several objects of different types. So, when we want to

access server objects by their arguments, it is necessary that we use the argument with the

same name, separated by the symbol $.

4.1.1 Session

In coding, functions such as callback are triggered after a specific event. The

argument session in server has some functions that allow callbacks, for instance, when an

application is initiated or when it is terminated. Example 7 shows how to do a task when the

application is terminated.

Example 7

session$onSessionEnded(function(), {})

4.1.2. Input
In user interface, we have used several elements that allow the user to insert

information – name of participant and name of experimenter, for example. That information

has to be accessed in the server to be used. Still, inside ui, we created unique names for

interactive elements. Those names will be used here to grant access to the elements and

retrieve necessary information from them. The access is made with the argument input.

Example 8 shows how we access the name of the participant and designate a variable to store

it. Because the only way to have access to the values of interactive elements is from inside

the reactive expressions (discussed later), the following example shows how to access an

interactive object, but it will return an error if you run it by itself.

Example 8

part = input$participant

4.1.3. Output

If input gets information from users, output gives it to them. Inside the application

we are building in this chapter, there are two types of output information: the clock and the

warning message indicating that the behavior was recorded. The output is made through the

element textOutput() at user interface. To return the information from this element to the user,

RESPONSE RECORDING WITH SHINY IN R 83

we use the function renderText(). Example 9 shows how this information is returned. For

now, we are returning only the first characters of the clock. That is, the line in Example 8

could be part of the function in Example 7 to set the clock to its initial state.

Example 9

output$clock=renderText({paste("00:00")})

4.2. Reactive expressions

In R scripting, codes run linearly from top to bottom in the algorithm – conditionally

to cycles. In the server of a shiny application, it is necessary that codes are selectively

executed in response to specific events, for instance, by clicking a button or changing a text

input. Additionally, it is required that scripts executed in response to these events are capable

of retrieving updated values of data provided by users. That way, for the actions to be

executed in the right order, reactive expressions are used. A reactive expression is a block of

code that responds to specific changes, so that the programmer can control what changes will

trigger the execution or re-execution of a script. In the application presented in this chapter,

we use four reactive expressions: (1) one that initiates the clock with the start button; (2) one

that stops the clock with the pause button; (3) one that exports data with the button “Export

data” and; (4) one that builds a graph when “Export graph” is clicked. All these expressions

use only one form of triggering the re-execution of programming blocks.

Example 10 uses the function observeEvent(). The first argument in this function

tells what change triggers the execution or re-execution of the block of code. In this case, we

use the start button as an example, but we could use any variable as an argument, such as text

inputs.

Example 10

observeEvent(input$start, {})

In observeEvent(), no object is directly returned to be used or changed later.

Although, if it is necessary to receive an object, the functions reactive() and eventReactive()

RESPONSE RECORDING WITH SHINY IN R 84

are available. The former does not require arguments, it is often used to access information

from interactive objects in non-reactive blocks. The latter works as observeEvent(), but

returns an object. For instance, if we want to display the text “Participant’s name is Joe” in a

textOutput() called “name” every time it is modified, the following three examples (Examples

11, 12, 13) show how to do the task using each one of the reactive expression functions.

Example 11
 observeEvent(input$participant,{
 output$nome=renderText({
 paste0("Participant’s name is ", input$participant, ".")
 })
 })

Example 12
 participant = reactive({
 paste0("Participant’s name is ", input$participant, ".")
)}
 output$name=renderText({ participant() })

Example 13
 participant = eventReactive(input$participant,{
 paste0("Participant’s name is ", input$participant, ".")
)}
 output$name=renderText({ participant() })

4.3 Global variables

For this application to work as desired, some variables will be needed to help control

its operation. For the existence of these variables to make sense for readers, although they are

not part of server (or user interface), they will be presented here. They are the following:

1. A bollean type variable (true or false) that indicates if the clock is running. This
indicator will help us to decide what will be shown on the clock: either the elapsed
time, or its initial state ("00:00").

2. A “time” type variable that indicates the time when the clock was initiated. It will be
useful for calculating how much time has passed, and for showing that time on the
clock.

3. A data frame with four columns to be filled with the occurrence of behaviors.
4. A function to calculate elapsed time since the “Start” button was clicked and format

this time in “minutes:seconds”.

Variables 1 (start), 2 (stTime) and 3 (data) are declared as a list of reactive values

outside of the server and user interface, as in Example 14.

RESPONSE RECORDING WITH SHINY IN R 85

Example 14

 vars=reactiveValues(
 start=F,
 stTime=0,
 data=as.data.frame(matrix(ncol=4, nrow=0,
 dimnames= list(NULL, c("Experimenter",
 "Participant",
 "Behavior",
 "Occurrence")
)
), stringsAsFactors = F)
)
 ui = fluidrow({ …)}
 server = function(input,output,session),{ … }

Although the application we are developing is intended to be used by a single

user, in theory it could be used simultaneously by multiple users. Because we are using

reactive values, instead of a common type list variable, the program allows multiple

users to have access to the same clock, and use the same table to record behaviors. If

our purpose was to create a table with its own clock for each user, we would have

declared those variables in a list inside the server, and replaced reactiveValues for list as

well.

Also, Variable 4 must be declared outside of the server and user interface, as in

Example 15.

Example 15

 format.timediff <- function(start_time) {
 diff = as.numeric(difftime(Sys.time(), start_time, units="mins"))
 hr <- diff%/%60
 min <- floor(diff - hr * 60)
 min=ifelse(nchar(min)<2,paste0(0,min),min)
 sec <- round(diff%%1 * 60)
 sec=ifelse(nchar(sec)<2,paste0(0,sec),sec)
 return(paste(min,sec,sep=':'))
 }
 ui = fluidrow({ …)}
 server = function(input,output,session),{ … }

Because at the beginning of this chapter we assumed readers had basic knowledge of

R, this function will not be detailed.

4.4. Server blocks

In section 4. (Server) we introduced the tasks that will be executed separately by the

application. From now on the blocks of code for each task will be explained.

RESPONSE RECORDING WITH SHINY IN R 86

4.4.1. States of the clock (Items 1 and 2)

When the application is started, the clock should have the state “00:00”. After

a click on the “Start” button, its state should change every second to imply the passage of

time. Since the block of code that tells in what state the clock is is the same, either stopped or

running, we will introduce first the block of code activated by clicking “Start”.

Example 16
 1. observeEvent(input$start,{
 2. vars$stTime=Sys.time()
 3. vars$start=T
 4. })

1. The click on the button “Start”, which inputID is “Start”, triggers the execution of
observeEvent() in line 1.

2. Line 2 records the exact time when the button was clicked in the global variable
vars$stTime by requesting date and time with the function Sys.time().

3. Line 3 records that the clock is running in the global variable vars$start. Using this
information, the script below (Example 17) can tell the clock what state should be
presented in the block below.

Example 17

1. output$clock=renderText({
2. invalidateLater(1000,session)
3. if(vars$start){
4. paste(format.timediff(vars$stTime))
5. }else{
6. paste("00:00")
7. }
8. })

1. Every 1 s, the text output for the clock is updated. This task is executed with the
function invalidadeLater() in line 2. This function “invalidates” the block of code
every x ms. In shiny, when a block is invalidated, it is signaled to be re-executed.

2. In line 3, the function if() checks if the clock is running in the global variable
vars$start.

3. If the clock is running, line 4 sets the difference between the time since the clock was
initiated and the current time, and records it in the variable vars$stTime.

4. If the clock is not running, line 6 will set the time in the clock as “00:00”.

4.4.2. Recording behaviors occurrence (Item 3)

When one of the behavior buttons is clicked, a record should be added to the record

table, and a warning should be displayed telling the user it happened. These tasks are

executed by the clock in Example 18.

RESPONSE RECORDING WITH SHINY IN R 87

Example 18

1. observeEvent(input$behav1,{
2. occurence=format.timediff(vars$stTime)
3. output$warn=renderText({paste("Behavior 1 recorded in", ocurrence)})
4. vars$data[nrow(vars$data)+1,]=c(input$experimenter, input$participant,
1, ocurrence)
5. })

1. Clicking the button “Behavior 1”, which inputID is “behav1”, triggers the execution
of observeEvent() in line 1.

2. Line 2 records the time of the click.
3. Line 3 sends information that a click was registered to the user and the time of the

record.
4. Line 4 adds a record to the table, with information of the experimenter, participant,

what behavior was clicked, and the time of occurrence.

Note that all behavior buttons work exactly the same way as button 1, the differences

are the name of the button in the argument of observeEvent(), the text displayed to the user

with the number of behaviors, and the record telling which behavior was clicked in line 4. For

this reason, the code for the other buttons will only be shown in the section presenting the

final result for the server.

4.4.3. End of session (Item 4)

When the pause button is clicked, the application has to stop the running clock and

record the end of the session in the record table. The block below (Example 19) introduces

how this task is executed.

Example 19

1. observeEvent(input$pause,{
2. vars$start=F
3. end=format.timediff(vars$stTime)
4. vars$data[nrow(vars$data)+1,]=c(input$experimenter,
input$participant, 0, fim)
5. })

1. Clicking the button “Pause”, which inputID is “pause”, triggers the execution of
observeEvent() in line 1.

2. Line 2 changes the value of the global variable vars$start indicating that the clock
should stop and reset to “00:00”.

3. Line 3 records the final time of session in a variable.
4. Line 4 records the end of session in the record table vars$data using the “behavior” 0

as a mark.

RESPONSE RECORDING WITH SHINY IN R 88

4.4.4. Export data (Item 5)

At the end of the session, the experimenter has to export the data recorded by the

application. This task is initiated with a click on the button “Export data” and executed by the

block below (Example 20).

Example 20

1. observeEvent(input$expdata,{
2. write.csv(vars$data, paste0(paste(input$experimenter,
 input$participant,sep="-"),".csv"))
3. })

1. Clicking the button “Export data”, which inputID is “expdata”, triggers the execution
of observeEvent() in line 1.

2. Line 2 saves the data with the name of experimenter and participant separated by “-“,
and the extension “.csv”, in the same folder as the application.

It is important to remember that the experimenter should move this file to another

folder to prevent the overwriting of this file with data from a new session.

4.4.5. Export graph (Item 5)

At the end of the session, the experimenter can export a graph for each recorded

behavior. This task is initiated with a click on the button “Export graph”, and the execution of

the block below. Figure 7 displays an example of graph created after this action.

Example 21

1. observeEvent(input$expgraph,{
2. datum=vars$data
3. end=datum$Occurence[datum$Behavior==0]
4. datum=datum[datum$Behavior!=0,]
5. for(i in unique(datum$Behavior)){
6. datum=rbind(c(input$experimenter,
 input$participant,
 i,
 "00:00"),
 datum)
7. ggplot(datum [datum $Behavior==i,], aes(x=ms(Ocurrence),
 y=cumsum(grepl(i, Behavior))-1)) +
8. geom_line() + geom_point()+xlim(0,ms(end))+ ylab("Frequency")
 +xlab("Session time")
9. ggsave(paste0("Behavior -",i,".png"))
10. }
11. output$warn=renderText({paste("Graphs were saved in the folder.")})
12. })

1. Clicking on the button “Export graph”, which inputID is “expgraph”, result in the
execution of observeEvent() in line 1.

2. Line 2 saves the data from a global variable in a local variable.

RESPONSE RECORDING WITH SHINY IN R 89

3. Line 3 records the final state of the clock in a local variable, for this information to be
excluded from the data that will be plotted, but used as a limit on the graph.

4. Line 4 removes the registry of the final state of the clock from the data to be plotted.
5. Line 5 builds a cycle that will create and save a graph for each recorded behavior.
6. Line 6 adds a line on the top of the table and records the beginning of the session as

“00:00”, for the initial line on the graph to start on this point.
7. Line 7 creates the initial parameters of the graph, indicating what behavior will be

used in the present cycle. It converts the column “Occurrence” in elapsed seconds and
uses the column “Behavior” to create a cumulative summation variable, in order to
produce the cummulative frequency graph of the recorded behaviors.

8. Line 8 adds the other graphic parameters, such as: the type of graph, x axis limits, and
labels of both axes.

9. Line 9 saves the graph in a file containing the label of the behavior saved in that
cycle.

10. Line 11 sends a warning to the user indicating that the file (or files) is saved.

Figure 7. Cummulative frequency graph generated by clicking the button “Export graph”.

4.4.6. Automatically saving the data (Item 6)

It could happen accidentally that the experimenter registers a session, shuts the

application down, and forgets to save the data. To prevent the loss of data, the application will

check for a file saved in the application folder under the name of experimenter and

participant. In case there is not, the application will automatically save the data recorded until

that moment. This task is done with the code in Example 22.

RESPONSE RECORDING WITH SHINY IN R 90

Example 22

1. session$onSessionEnded(function(){
2. experimenter=isolate(input$experimenter)
3. participant=isolate(input$participant)
4. filename=paste0(paste(experimenter,participant,sep="-"), ".csv")
5. autoSave.name=paste0(paste(experimenter,

participant, sep="-"),
 "AutoSave.csv")
6. if(dim(isolate(vars$data))[1]>0){
7. if(!file.exists(filename)){
8. write.csv(isolate(vars$data), autoSave.name)
9. }
10. }
11. })

1. Shutting down the application makes it run the function onSessionEnded() in line 1.
2. Lines 2 and 3 save the names of experimenter and participant in different local

variables each. Because these variables are reactive, that is, they may be modified,
they must be isolated with the function isolate(). Isolating these variables prevents
them from being re-evaluated during the execution of onSessionEnded() and allows
reactive variables to be used in nonreactive contexts, such as onSessionEnded().

3. Lines 4 and 5 save a filename to be checked for its existence in the folder and a
filename to be created in case none exists in the folder, respectively.

4. Line 6 checks if there is any information recorded in the data table. If true, the
existence of a saved file with this information is verified.

5. Line 7 checks for the existence of a file named under the names of experimenter and
participant. In case there is not, the next lines will do the work.

6. Line 8 saves the data under the name “Experimenter-ParticipantAutoSave.csv”.

4.5. Server

All blocks of the server were presented and detailed separately. With this

information, it is possible to build our final server, which will put together the code for all

interface parts to work according the application initially proposed.

Example 23

server <- function(input, output, session) {
 observeEvent(input$start,{
 vars$stTime=Sys.time()
 vars$start=T
 })
 observeEvent(input$pause,{
 vars$start=F
 end=format.timediff(vars$stTime)
 vars$data[nrow(vars$data)+1,]=c(input$experimenter,input$participant,0,end)
 })

 output$clock=renderText({
 invalidateLater(1000,session)
 if(vars$start){
 paste(format.timediff(vars$stTime))
 }else{
 paste("00:00")
 }
 })

RESPONSE RECORDING WITH SHINY IN R 91

 observeEvent(input$behav1,{
 ocurrence=format.timediff(vars$stTime)
 output$warn=renderText({paste("Behavior 1 recorded in", ocurrence)})
 vars$data[nrow(vars$data)+1,]=c(input$experimenter,input$participant,1,
ocurrence)
 })

 observeEvent(input$behav2,{
 ocurrence=format.timediff(vars$stTime)
 output$warn=renderText({paste("Behavior 2 recorded in ", ocurrence)})
 vars$data[nrow(vars$data)+1,]=c(input$experimenter,input$participant,2,
ocurrence)
 })

 observeEvent(input$behav3,{
 ocurrence=format.timediff(vars$stTime)
 output$warn=renderText({paste("Behavior 3 recorded in ", ocurrence)})
 vars$data[nrow(vars$data)+1,]=c(input$experimenter,input$participant,3,
ocurrence)
 })

 observeEvent(input$behav4,{
 ocurrence=format.timediff(vars$stTime)
 output$warn=renderText({paste("Behavior 4 recorded in ", ocurrence)})
 vars$data[nrow(vars$data)+1,]=c(input$experimenter,input$participant,4,
ocurrence)
 })

 observeEvent(input$expdata,{

write.csv(vars$data,paste0(paste(input$experimenter,input$participant,sep="-"),
".csv"))
 output$warn=renderText({paste("Data saved in the folder.")})
 })

 observeEvent(input$expgraph,{
 datum=vars$data
 end=datum$Occurence[datum$Behavior==0]
 datum=datum[datum$Behavior!=0,]
 for(i in 1:unique(datum$Behavior)){
 datum=rbind(c(input$experimenter,input$participant,i,"00:00"),datum)
 ggplot(datum[datum$Behavior ==i,], aes(x=ms(Occurence),
y=cumsum(grepl(i,Behavior))-1)) +
 geom_line() + geom_point()+xlim(0,ms(end))+ylab("Response frequency")
+xlab("Occurence per second")
 ggsave(paste0("Behavior-",i,".png"))
 }
 output$warn=renderText({paste("Graphs were saved in the folder.")})
 })

 session$onSessionEnded(function(){
 experimenter=isolate(input$experimenter)
 participant=isolate(input$participant)
 filename=paste0(paste(experimenter,participant,sep="-"),".csv")

filename.autoSave=paste0(paste(experimenter,participant,sep="-"),"AutoSave.csv"
)
 if(dim(isolate(vars$data))[1]>0){
 if(!file.exists(filename)){
 write.csv(isolate(vars$data),filename.autoSave)
 }
 }
 })
}

RESPONSE RECORDING WITH SHINY IN R 92

5. Application

Now that all of the elements for the application are constructed, that is, global

variables, the user interface, and the server, we can put all this together and make it run. All

parts of the application can be stored in a single file or saved separately and loaded using the

function source(). To make it easier, Example 24 shows all elements depicted as if they were

in a single file, and summarizes the elements in lines using suspension points.

Example 24

Loading required packages
library(shiny)
library(lubridate)
library(ggplot2)

Global variables
vars=reactiveValues(…)
format.timediff = function(start_time) { … }

User interface
ui = fluidPage (…)

Server
server = function(input, output, session) { … }

Running application
shinyApp(ui, server)

It is possible to run shiny applications hosted in collaborative platforms, such as

GitHub®. For the reader to have access to the application in this chapter, it is available at

GitHub® in the profile “ricardofcj”, “capitulo-shiny” repository. With that information, if

readers have RStudio and Shiny package installed in a computer, they will be able to run it

using the command runGitHub(“ricardocfj”,”capitulo-shiny”). It is important to say that the

ability to save files will not be operational, since the application was programmed to run

locally. However, it is possible to make a copy of the application directly from GitHub® in

the link https://github.com/RicardoFCJ/capitulo-shiny/blob/master/app.R.

References

Chang, W., Cheng, J., Allaire, J. J., Xie, Y., & McPherson, J. (2018). shiny: Web Application

Framework for R. R package version 1.1.0.

https://CRAN.R-project.org/package=shiny

Cooper, J. O., Heron, T. E., & Heward, W.L. (2007). Applied behavior analysis (2nd ed.)

Upper Saddle River, NJ: Pearson.

https://CRAN.R-project.org/package=shiny
https://github.com/RicardoFCJ/capitulo-shiny/blob/master/app.R

RESPONSE RECORDING WITH SHINY IN R 93

Grolemund, G., & Wickham, H. (2011). Dates and Time Made easy with lubridate. Journal

of statistical software, 40 (3), 1-25. https://doi.org/10.18637/jss.v040.i03

LeBlanc, L. A., Raetz, P. B., Sellers, T. P., & Carr, J. E. (2016). A proposed model for

selecting measurement procedures for the assessment and treatment of problem

behavior. Behavior Analysis Practice, 9, 77-83. https://doi.org/10.1007/s40617-015-

0063-2

Campos Junior, R. F., & Rocca, J. Z. (2018). Introdução à linguagem de programação R

aplicada à pesquisa e intervenção comportamental. In Hernando Borges Neves Filho,

Luiz Alexanfre Barbosa de Freitas and Nicolau Chaud de Castro Quinta (Eds),

Introdução ao desenvolvimento de softwares para analistas do comportamento, v. 1

(pp. 101-123).

Mudford, O. C., Locke, J. M., & Jeffrey, K. (2011). Rates of responding measured by

continuous recording in applied behavioral research. Behavioral Interventions, 26,

41-49. https://doi.org/10.1002/bin.323

Springer, B., Brown, T., & Duncan, P. K. (1981). Current measurement in Applied Behavior

Analysis. The Behavior Analyst, 4, 19-31. https://doi.org/10.1007/BF03391849

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New

York. https://doi.org/10.1007/978-0-387-98141-3

https://doi.org/10.1007/BF03391849
https://doi.org/10.1007/978-0-387-98141-3
https://doi.org/10.1002/bin.323
https://doi.org/10.1007/s40617-015-0063-2
https://doi.org/10.1007/s40617-015-0063-2
https://doi.org/10.18637/jss.v040.i03

Chapter 4

Is the programmer an author? Developing software for research1

Wivinny Ferreira Lima
Universidade Federal de Minas Gerais

Carlos Rafael Fernandes Picanço
Imagine Tecnologia Comportamental

Abstract

Whether or not to involve software in experimental studies is a recurring issue in the research
environment. Methodology planning involves decisions such as whether to use existing software,
software that needs to be adapted, or to develop novel software. The present essay discusses criteria
for authorship and co-authorship of research including such decisions. The discussion was
organized in three topics: (a) issues related to the scientific relevance of the authorship of a
software; (b) issues related to the practicality of developing software in a research environment; (c)
ethical issues that arise when researchers collaborate with others either from industry (e.g.,
professional programmers) or not (e.g., research students that also develop software). Although only
the authorship and co-authorship of software research is considered, the present work can serve as a
basis for discussing the authorship of research that requires other specialized technical services
(e.g., construction of mechanical or electromechanical devices). We hope that this discussion will
proactively guide decision-making in the context of research planning, increasing the chances of
success of relevant and injustice-free scientific endeavors.

1 We thank the valuable commentaries of Dr. Shawn Gilroy on early versions of the present chapter.

IS THE PROGRAMMER AN AUTHOR? 95

Whether or not to involve software in experimental studies is a recurring question in

the research environment. The planning of the methodology involves decisions as to whether

to use existing software, which will need to be adapted before being used, or even novel

software that will need to be developed. The purpose of this essay is to discuss the criteria of

authorship and co-authorship of research with such decisions.

This discussion was organized in three topics: (a) issues related to the scientific

relevance of the authorship of a software; (b) issues related to the practicality of developing

software in a research environment (e.g., funding, testing, licensing); and (c) ethical issues

that arise when researchers collaborate with others either from industry (e.g., professional

programmers) or not (e.g., research students that also develop software). Besides discussing

the issue of authorship and co-authorship of research involving software, the present text can

also serve as a basis for discussing the authorship of research that requires other specialized

technical services (e.g., construction of mechanical or electromechanical devices). We hope

that this discussion will proactively guide decision-making in the context of research

planning in scientific endeavors, increasing the chances of successful, relevant research, as

well as recognizing the contributions of the entire research team (e.g., giving the right credit

for the work of principal investigators, research assistants performing research, research

students developing software, and so on).

On the scientific relevance of software authorship

Next, several criteria are proposed to classify whether software has relevance (i.e., it

is recognized as a valuable contribution) in the context of scientific authorship. There are

times when software is directly relevant to replication or extension. It is accessible to

interested researchers and the consequences of its use are part of the literature in such a way

that it supports the control over intervening variables, dependent variables, or independent

variables. That is, software is known to support experimental control and researchers may

further include and extend it to novel application.

IS THE PROGRAMMER AN AUTHOR? 96

The relevance of software may be observed in other ways. That is, software may

allow for experimentation to continue and expand at a reduced cost to the researchers. In

contrast, the use of software that reduces experimental control to the point of preventing the

testing of a research problem, of course, has no scientific relevance to this problem,

regardless of its cost. In other words, reducing the cost is a valuable contribution to science as

long as it does not compromise the investigation of the research problem (i.e., involving

software in research just because it is cheaper is not reliable).

Another criterion of relevance is related to the generality of a scientific problem.

Software may not be accessible in a domain of a scientific field of interest, but its benefits are

known in another known domain. Different fields of knowledge (e.g., behavioral sciences,

smart agriculture and computer vision) can share common features that allow the reuse of

work between domains. After the translation from one field to the other, the source domain

will have expanded its relevance, just as the target domain will have a new mean of

investigation under its reach. Consequently, making the software accessible in the new

domain has scientific relevance for both domains.

Yet another criterion of relevance is related to the exploratory and innovative

character of the scientific enterprise. Novel software may emerge and its immediate value,

having only been foreseen, may justify further investigation. A technological resource that

was not accessible before, but now is, may generate new research questions, new lines of

research, increase experimental control (i.e., control over the rate/location of behavior),

reduce costs and so on. On the other hand, these predictions may not hold true and this could

pose a risk to researchers. There is also the possibility of correct predictions, but that will not

arrive at the right time, as software can quickly become obsolete. In fact, software that was a

contribution in the past can lose its relevance in the future. Exploratory methodological

research with contributions that guide other researchers to not make the same mistakes has

IS THE PROGRAMMER AN AUTHOR? 97

scientific relevance, although they do not necessarily guarantee an increase in experimental

control, cost reduction and most problems.

Despite the vast resources invested in software, it will not always have scientific

relevance, however a researcher may be induced to think so by mere popularity. In a general

sense, when you have many researchers reporting using software on their own research, new

researchers may be induced to use it too without proper reasoning, as a herd effect. Software

has been seen by scientists as very important for the development of scientific research. For

example, Hannay, MacLeod, Singer, Langtangen, Pfahl and Wilson (2009) conducted an

opinion survey using a five-point likert scale (“not at all important”, “not important”,

“somehow important”, “important”, “very important”) in which 84.3% of participants (who

were scientists from different areas and regions of the world) responded that software

development is “very important” or “important” for their own research, and 46.4% responded

that software development is “very important” or “important” for other people's research.

However, general opinion about the importance of software does not automatically convert

into relevance. In fact, the inclusion of software in a research methodology may be

completely unnecessary in some cases or it may, even if relevant, make the research

unfeasible (for economic or logistical reasons, for example). Consequently, generalizations of

this type should be avoided.

On practical actions

Although the decision to include software in research methods may support scientific

relevance, the decision may not be achievable in a practical sense. A critical variable that

affects the practical execution of such decisions is time, whether it is the time needed to

develop the program, or its adaptation and maintenance, or the time needed for training the

people who will make use of the program.

Hannay et al. (2009) also investigated the opinion of scientists about software

development time, again using a five-point likert scale (“much less time”, “less time”, “the

IS THE PROGRAMMER AN AUTHOR? 98

same time”, “more time”, "much more time"). The authors documented that 53.5% of the

interviewed scientists reported spending “much more time” or “more time” developing

software than 10 years ago, 44.7% reported that they spend “much more time” or “more

time” developing software than 5 years ago and 14.5% reported that they spend “much more

time” or “more time” developing software than 1 year ago. Another data obtained in this

research was that the scientists reported spending approximately 30% of their working time

on developing software.

A researcher's time is a finite resource, and time administration directly affects the

quality of the research enterprise. After all, meeting deadlines is part of the scientist's routine

and this professional often accumulates several functions (e.g., advising, giving classes,

administrative and research functions). By including the programming activity as part of a

research activity, there will inevitably be less time for other activities. Consequently, there

must be moderation in the time spent in the software development cycle, and this scenario

leads to (programming) activities shared by teams that may include students in graduate,

master's or doctorate, for example. The development cycle in the academic environment has

different characteristics than the software development cycle in a business environment.

These differences have implications for the authorship of the final research manuscript, as

elaborated below.

The development cycle in the academic environment

We live in a culture with people used to pay for a product and receive it on time.

Then, you may think that an alternative to spending hours developing software is to hire a

professional. In this way, a contract can be signed between the parties transferring the

copyright of the software to the authors of the research, ensuring exclusivity of the authorship

rights of the final work. However, in the academic environment, hiring a professional can

severely delay or fully compromise a research. A first challenge will be to obtain, in a timely

manner, the financing that covers the costs of the self-employed professional or development

IS THE PROGRAMMER AN AUTHOR? 99

company. However, funding may be the least of such challenges. The contractor (e.g.,

through a company) will need to work together with the scientist and herein lies the difficulty.

Hannay et al. (2009) noted that there is a gap between professional programmers and

the scientific community. A professional programmer can develop any software as long as the

client (in this case, the scientist) can describe its purpose and execution. And it is exactly in

this description that a difficulty is encountered, the scientist deals with knowledge under

construction and, by definition, unfinished and temporary, which makes it difficult for the

programmer to initially write the requirements of the service (i.e., to write the blue prints of

the software). This characteristic of research has led us to prefer an “on demand” style of

writing software. We chose to write software in a modular way and in short development

processes, remaining open to improvements and correction in the long term. In addition,

whenever possible, instead of writing software for a long term research agenda, we choose to

writing a computer program for a specific research, simplifying the survey of program

requirements.

Different from the “on demand” style of development suggested and illustrated in the

previous paragraph, Segal (2005) reports a case in which a group of independent

programmers developed software, with difficulties, for a group of scientists. The author cites

two main problems throughout the development process: (1) Scientists were accustomed to

developing software in a more interactive way and with successive meetings established on

demand, hence they had a lot of difficulty when the programmers requested all the demand in

a single moment; (2) The use of contract documents and limited time meetings was

insufficient to create an understanding between scientists and programmers.

In fact, the software development cycle in the academic environment has challenging

characteristics. In an ideal research environment, there is an ongoing development process, in

which the advisor, students and programmer will set aside time to (1) help the programmer

specify the program requirements and (2) to test the program and report problems.

IS THE PROGRAMMER AN AUTHOR? 100

On ethics

As suggested earlier, the professional programmer in general has no interest in

authorship and will transfer rights to researchers. In the context of the publication of

scientific research in indexed journals, this means that the responsibility for matters related to

the software will rest exclusively with the authors (or author) of the published work, not with

the company that developed the software and that, it should be noted, knows it in depth. This

means that the researcher who receives demands related to the responsibility of the software,

even in full rights, will not be able to respond to these demands.

On the other hand, the researcher who is also the programmer of the research software

will share authorship and responsibility with the research group. The people in the group who

participated in the development process are authors of the software, not just who writes it, as

well as the people in the group who participated in the development of the research are

authors of the manuscript derived from the research. For the purposes of this essay, the

authorship of a scientific work will be defined according to the four criteria presented by the

International Committee of Medical Journal Editors (2018), the same criteria currently used

by the journal Frontiers in Psychology. According to this definition, the author of a work is

someone who meets at least one requirement of each of the criteria below:

◦ First criterion:

▪ contributes substantially to the conception of the work; or

▪ contributes substantially to work planning; or

▪ contributes substantially to the acquisition of data for the work; or

▪ contributes substantially to the analysis of data for the work; or

▪ contributes substantially to the interpretation of data for the work.

◦ Second criterion:

▪ drafting the work or

▪ revising the manuscript critically for important intellectual content.

IS THE PROGRAMMER AN AUTHOR? 101

◦ Third criterion:

▪ approves the final version of the manuscript to be published.

◦ Fourth criterion:

▪ Agree to be accountable for all aspects of the work, ensuring that issues related to

the accuracy or integrity of any part of the work are properly investigated and

resolved.

As previously developed in the subsection “The development cycle in the academic

environment”, it is possible to notice that the researcher who is also a programmer

contributes substantially to the acquisition of work data, as he builds and documents the use

of the tool used for data collection. In this way, when building and documenting the tool, he

will be able to respond to the demands of software responsibility with autonomy. In addition,

the researcher who is also a programmer contributes substantially to the planning of the work

when he fills methodological gaps that were not foreseen during his conception. Due to his

programming skills, the researcher who is also a developer contributes substantially to the

analysis of data when he generates alternative analyzes and when he automates the process

making it feasible in a timely manner. By knowing the data acquisition tool and science in

depth, it can also contribute substantially to the interpretation of the data, either by

identifying points for future corrections, or by contributing to the exploration of alternative

strategies in a creative way through programming languages specifically developed for data

analysis (such as R and Octave). There is no doubt, therefore, that the researcher who is also

a programmer can meet the first criteria of authorship.

Consequently, working as a reviewer also allows each of the other three criteria of

authorship to be met. But in the case of reviews there is a problem for those who identify

themselves as researchers and programmers; invitations may not happen, as the programmer's

work is not recognized as a substantial contribution to research, which may overshadow his

contributions related to the first criterion. The case of short-term researchers in the medical

IS THE PROGRAMMER AN AUTHOR? 102

tradition (Newman, 2006) is similar, and illustrates the social consequences of this problem

for researchers who are also programmers: low recognition and difficulties in pursuing a

scientific career.

A thought that illustrates the picture of low recognition considers that the researcher

who is also a programmer acts only as a “developer” and nothing else. Phrases like “The

programmer does not help in the development of the research”, illustrate this type of thinking.

Now, as previously discussed, the programmer can make substantial contributions to

research, for example, by creating a tool that ensures strict control for experiments, that

establishes strict protocols or that registers new data of interest to the area. To argue that the

programmer does not help in the development of the research is, therefore, untrue.

Finally, it should be noted that the criteria mentioned here are applicable to specific

research conducted by the group members or by individuals and not to derivative research

conducted by third parties. In this sense, the present essay argued that someone who is a

researcher and also a programmer makes substantial contributions to a specific research when

writing software specifically for it, and does not make substantial contributions if a third

party research, derived from that initial research, only uses the software previously

developed. The use of a software previously developed by third parties does not guarantee the

fulfillment of the first criterion of authorship in the research of these third parties.

Consequently, we maintain that it is ethical that the researcher (also programmer) is not

invited as an author for the research of third parties who only use the software. In this case, it

is ethical for those only using the software to cite it (in accordance with the standards

recommended by the chosen means of communication, e.g., in accordance with the standards

of the American Psychological Association in psychology journals).

IS THE PROGRAMMER AN AUTHOR? 103

References

Hannay, J. E., MacLeod, C., Singer, J., Langtangen, H. P., Pfahl, D., & Wilson, G. (2009).

How do scientists develop and use scientific software? In 2009 ICSE Workshop on

Software Engineering for Computational Science and Engineering (pp. 1–8).

Vancouver, BC, Canada: IEEE. https://doi.org/10.1109/SECSE.2009.5069155

International Committee of Medical Journal Editors. (2018). Defining the Role of Authors

and Contributors. Retrieved November 17, 2018, from

http://www.icmje.org/recommendations/browse/roles-and-responsibilities/defining-

the-role-of-authors-and-contributors.html

Newman, A. (2006). Authorship of research papers: ethical and professional issues for short-

term researchers. Journal of Medical Ethics, 32(7), 420–423. https://doi.org/10.1136/

jme.2005.012757

Segal, J. (2005). When Software Engineers Met Research Scientists: A Case Study. Empirical

Software Engineering, 10(4), 517–536. https://doi.org/10.1007/s10664-005-3865-y

	Authors
	Preface
	Foreword
	Contents
	1. Current use and development of FOSS in Behavior Analysis:
Modern Behavioral Engineering
	2.
A step-by-step guide to develop experiments with Axure© RP
	3. Developing an application to register continuous responses with shiny package in R
environment
	4.
Is the programmer an author? Developing software for research

